University of North Carolina's Imaging Research Building

Final Report

Daniel R. Hesington, LEED AP Structural Option Consultant- Dr. Thomas Boothby April 7, 2010

University of North Carolina Imaging Research Building

125 Mason Farm Road, Chapel Hill, NC

Building Statistics

Size: 325,000 SF Cost: \$280 Million Building Height: 8 above grade + 2 subgrade = 10 Architect: Perkins + Will Structural/Civil: Mulkey Engineers & Consultants MEP: Newcomb and Boyd CM: Choate Construction

Architecture

The UNC Imaging Research Building will be a state of the art imaging and cancer research facility located at UNC Chapel Hill. It will have an L-shaped floor plan that will include facilities for a 7 Tesla Magnet, a 1.5Ghz NMR, a Cyclotron, MRI machines, PET/CT Scanners and other imaging equipment on its two sub-grade levels. It will also include university offices and a number of other different functioning research labs. The façade will be a mixture of glazed aluminum curtain wall and precast panels.

Structure

The UNC Imaging Research Building will have a concrete superstructure with mass walls below grade in order to shield radiation from there imagaing machines. The foundation will consist of a combination of mat footings, wall and shearwall footings resting mostly on bedrock.

MEP

The cooling sytem will consist of with custom air handling units and precision room air conditiong units utilizing campus chilled water. Campus chilled water is used in plate and frame heat exchangers to privede chilled water to cooling coils in AHU's and chilled water to precision room air conditioning units. The heating system will use to district heating water to provide hot water to heating coils in air handling units and heating water to terminal unit heating coils. The equipment used will be three heating water pumps with high efficiency motors.

Daniel Hesington - Structural Option http://www.engr.psu.edu/ae/thesis/portfolios/2010/drh5015/index.html

Chapel Hill, NC

Table of Contents

Executive Summary	5
Introduction	6
Architectural Design Concepts	6
Structural System	7
Foundation	7
Superstructure	8
Lateral System	9
Problem Summary	
Proposed Solution	11
Design Goals	13
Structural Depth	14
Introduction	14
Codes and Design Standards	14
Materials	15
Design Procedure	15
Design Loads	16
Gravity Loads	16
Lateral Loads	17
Design Process	
Gravity Framing	
Lateral Framing	
Foundations	
Structural Depth Summary	
Breadth Topics	27
Construction Management Breadth	27
Construction Management Summary	
Enclosure Breadth: Blast Glazing	
Enclosure Breadth: Blast Design Summary	
Conclusions and Final Remarks	
Acknowledgements	

Bibliography	7
Appendix A: Composite Deck Design	8
Appendix B: Wind Calculations4	1
Appendix C: Seismic Calculations	2
Appendix D: Gravity Beams & Girders Calculations5	7
Appendix E: Gravity Column Calculations	2
Appendix F: Lateral Calculations and Frame Elevations	4
Appendix G: Steel Redesign Floor Plans	2
Appendix H: Construction Management Breadth8	1
Appendix I: Enclosure Breadth: Blast Design	8

Chapel Hill, NC

Executive Summary

The following report investigates and discusses the effects of redesigning the above grade gravity and lateral systems of the UNC Imaging Research Building from concrete to steel while maintaining key architectural concepts. Using RAM Structural System, the floor system was reduced from 30" to 24 ¼", opening up 5 ¾" of vertical trade space. This is because girders were limited to 18" in depth. Columns were also kept to a minimal 14" in depth, compared to the typical 24"x24" columns in the existing structure. Also by replacing the existing shear walls and replacing SCBF' as the main lateral force resisting system above grade, the number of lateral frames was reduced while still meeting both strength and drift requirements. With all of the gravity and lateral designs, hand calculations were completed to confirm the results that were determined with RAM.

An overall cost analysis and schedule comparison for the two framing systems was also completed. An initial square foot cost estimate was done followed by a detailed estimate of both options. To make an "apples-to-apples" comparison, only the beams and girders, columns, and lateral frames were evaluated. The cost of the existing concrete system was estimated to be approximately 4.83 million, while the cost for the redesigned steel framing was estimated to be 3.68 million. As far as erection time is concerned, the steel system had the advantage taking only 225 days versus 315 days for concrete, but the use of more crews (other than the suggested amount by R.S. Means) would increase this schedule, increasing the cost as well.

Using the Depart of Defense's Unified Facilities Code, the glass façade on the south face of IRB was designed for blast loading to effectively protect the occupants of the building. It was determined that 5/16" heat strengthened, laminate panels between mullions will effectively withstand an equivalent TNT charge of 220 pounds at a standoff distance of 50 feet. This is the equivalent of a roadside attack by a small compact vehicle. A redesign of this magnitude would certainly incur a cost increase compared to the existing façade, but in today's heightened risk of terroristic attacks, it is a consideration that might be of value.

Overall, it was determined that the steel structure would be a viable alternative to the existing concrete design. While certainly not a complete evaluation of the two systems, the research and analysis done in this report are substantial enough to make this assertion.

Chapel Hill, NC

Introduction

The Imaging Research Building, also known as IRB, is located on the University of North Carolina's Chapel Hill campus on Mason Farm road. It has an "L" shaped floor plan containing a re-entrant corner, with the long face dimensions of 282'-4" by 247'-3". It has an overall height of 180'-0" from Basement 2 (second floor sub grade) to the roof, with setbacks at the mechanical mezzanine levels. The building's usage will be a combination of research space, laboratories, and office space for UNC.

Figure 1.1 - View of IRB from Northwest

Architectural Design Concepts

The Imaging Research Building at UNC Chapel Hill was designed by the architecture firm Perkins + Will. Its primary usage is the driving force behind many of the structural decisions for the project. Once it is open, it will contain the most advanced imaging equipment in any one spot in the world. First, the two sub grade floors house several heavy pieces of imaging research equipment that have large Gaussian fields. Because of this, foundations, walls, and slabs were made thicker than usual, which will result in the use of mass concrete pouring techniques when constructed. For example, the foundation where a 1.5GHZ NMR machine will sit required a 6' thick mat footing.

Above grade you will find typical bays sizes of 21'-4" by 21'-4", and 21'-4" by 31'-4" driven by the laboratory space requirements on every floor. A bridge also connects the new imaging research facility to the existing Lineberger Cancer Center on the second floor. At the eighth floor, a large area

houses all of the mechanical equipment with a partial mezzanine at the floor above, which services all of the imaging and laboratory equipment below. These architectural and usage restraints have a generous effect on the structural system.

Structural System

Foundation

The geotechnical engineering study was performed by Tai and Associates on November 12, 2008. The study indicates that the subsurface materials on the site consist of pavement and topsoil, fill, residual soil, weathered rock, and rock and boulders. Based on this composition, Tai and Associates determined a net allowable bearing pressure of 6000 pounds per square foot for Mulkey to use in their foundation calculations.

The result is a mixture of spread footings under the columns, and a combination of spread and mat footings under the large imaging research equipment and shear walls. The walls below grade range from 18" to 36" in thickness, and in one location a 36" wall spans both sub grade floors to the first floor unbraced. An example of a typical mat footing can be seen in Figure 1.1. As with the other mat footings, this one is combined and sits under two pieces of large imaging equipment. It is 6'-0" thick and also supports a shear wall that steps 6' in elevation. Another area of note in the foundation design is a 6'-0" thick concrete footing which will support a cyclotron, another heavy piece of imaging equipment.

Figure 1.1 – Mat Foundation under Imaging Equipment

Superstructure

dimensions vary, but are typically 28"x30".

Most of the columns in the Imaging Research Building are 20"x20" square columns with #3 ties above the first floor, and 24"x24" below grade, with all them having a compressive strength of 7 ksi. The typical frame consists of four bays with three of them being approximately twenty feet in width and the other being thirty feet in width to accommodate the laboratories that occupy these spaces on almost every floor of the building.

For more detail on the superstructure, a section of the third floor framing is provided in **Figure 1.2** for reference.

Figure 1.2 - Section of Third Floor Framing

Ordinary reinforced concrete shear walls are used as the main lateral force resisting system in the UNC Imaging Research Building. The largest shear walls wrap around the main elevator and stairwell cores while the other ones encase mechanical closets. Most of the shear walls run from the foundation to the mechanical mezzanine with only half of them continuing to the roof level. There are thirty-three shear walls either 12" or 16" thick. **Figure 1.3** shows the location of the existing shear walls and **Figure 1.4** depicts the shear walls around the main stair and elevator core

Figure 1.3 – Location of Existing Shear walls

Figure 1.4 – Shear walls around Elevator Core

(Note: Not to Scale)

Problem Summary

Problem Statement

Currently, IRB is designed as a complete concrete structure. The main reason for this is because of the existence of the highly magnetic imaging equipment on the two sub grade floors of the building. There is also equipment on the first floor as well, but after that there is no other magnetic equipment that would determine a need for a concrete column, beam and floor system.

There are several reasons though why concrete was chosen as the remainder of the building's superstructure. As far as the lateral system is concerned, shear walls are regarded as the cheapest method for resisting lateral loads. There is also no problem connecting the lateral system into the rest of the framing. Not only that, but the one-way cast-in-place slab is a simple floor system to design and construct. Therefore, it is relatively inexpensive both in design and construction. Also, it works for heavier live loads as in the Imaging Research Building because there is very little deflection when used in combination with beams. But more importantly, penetrations in the slab cause few structural problems because there is not a lot of large rebar or tendons running through it and it is easy to reinforce around them after they have been created. This is very important on a project like the IRB where there are a number of mechanical systems and equipment lines for the imaging laboratory equipment penetrating through the floors.

However, the concrete superstructure is very bulky and heavy. The 20"x20" columns reduce the usable floor space and the 30" deep girders for the floor system take up a lot of critical room that mechanical and other trades could use. Also, the cast-in-place beam and slab system requires a lot of formwork that will be time consuming and costly. This results in a longer construction schedule which will delay the opening of the building.

After reviewing this information, the goal is to reduce the overall weight of the building, increase usable floor space, and increase vertical trade space, while not incurring much of a cost increase, if any at all. It has already been determined in Technical Report 2 that the composite steel floor system in combination with steel framing would be the most likely candidate for replacing the existing floor system and framing to meet these goals.

There are some problems that will need to be addressed in the proposed solution. The lateral system will have to be changed, unless a solution can be generated to tie the new steel framing to the shear walls. Also, the issue with the highly sensitive imaging equipment will also have to be addressed.

Proposed Solution

Floor System

To meet the goals outlined in the problem statement, the superstructure of the building will be changed from concrete to steel **only** above grade. Hence, the new structure of the building will be a concrete base for the two basement levels, with steel above. The new floor system will preliminarily be composite steel and composite deck. From the study done in technical report two, the implication of a composite steel framing system should decrease the overall depth of the floor system, allowing more space to be freed for other trades as seen in **Figure 2**.

(Note: Preliminary Design from Tech Report 2)

While columns weren't addressed in technical report two, the steel columns should be smaller than the existing 20" by 20" concrete columns. In turn, more usable floor space will become available unless further study indicates that the need for increased fire protection negates the smaller depths.

Lateral System

Chapel Hill, NC

For the lateral system, it will also be changed to either brace frames or moment frames unless enough evidence suggests a cost effective shear wall connection can be employed. Since cost drives most projects, if it is determined that a new lateral system is economical, it will be designed and summarized. The location of the new lateral system will be where the existing shear walls are located from the first floor to the roof.

Foundation System

Finally, an analysis will be done to determine the impact of the steel structure on the foundation. Since it was preliminarily determined in technical report two that steel framing will reduce the overall weight of the structure, the foundations should be redesigned to be shallower, and therefore less expensive. The goal will be to eliminate the mat slabs as much as possible and redesign the foundation as spread and continuous footings.

Solution Method

The design of the steel framing will be based on the 13th edition of the AISC steel manual. Analysis for gravity and lateral loads will be done with a model created in RAM Structural System based on LRFD. Input for the model will consist of loads as determined from ASCE 7-05 and trial sizes of the members. Live load reduction will be considered and load combinations from ASCE 7-05 will be set up and run to determine the required sizes of the members for the steel framing. Time permitting, the new members will be spot checked by hand.

After the gravity framing as been determined, research will be conducted to determine the type of connections available and the cost of the connections for steel framing into shear walls. The cost of braced frames and moment connections will also be surveyed. The method that is most cost effective will be chosen and designed in either RAM or ETABS for a new lateral system, or by hand for the steel to concrete connection.

Finally, with the new overall building weight, the new impact on the foundations will be analyzed with hand calculated spot checks. RAM foundation will be used to redesign the foundations if it is warranted.

Design Goals

The goal of this depth study was to determine the feasibility of changing the structural system of the Imaging Research Building from a one-way cast-in-place slab system with ordinary reinforced shear walls to a composite steel system with steel braced frames. Other goals that were present during the redesign of IRB are as follows:

- To maintain the current column layout as much as possible in order to maintain the open floor plan as required by the usage of the building and to limit the impact on the architecture of the building.
- To design the new composite floor system efficiently so that the total depth of the system is less than the original to free up vertical trade space.
- To use RAM Structural System to design the gravity and lateral members, and confirm these sizes with hand calculations
- To eliminate the need for mat slabs for portions of the foundation due to the significant weight of the existing structure and replace them with more economical spread footings.
- To present a design that has a shorter construction schedule with less material and construction costs than the existing design for IRB
- To design a blast resistant façade with connections to the new steel framing.
- To follow all codes and standards during the redesign.

Structural Depth

Introduction

The Imaging Research Building was originally designed as a heavy, one-way cast-in-place concrete beam and slab system to meet the demand of the heavy live loads, shielding of imaging equipment and the inevitable mechanical openings that would be required. Steel was chosen for the redesign due to the lower weight, shorter erection time, high tensile strength, and because concrete was the

focus of the previous three technical reports. Out of the possible steel framing systems, a composite steel system was chosen (see **Figure 3**) because of its ability to maintain the current spans of the building while decreasing the total floor depth. Also in conjunction with the material change to steel, the lateral system was changed to braced frames, as this choice does not interfere with the architecture of the building, and it is the next most economical option next to the existing shear walls. The conclusions from this study will be used to compare the redesign to the existing structure later in the report, and determine whether not a steel system would have been a feasible option for IRB's design teams.

Figure 3 - Composite Floor System with Metal Deck

Codes and Design Standards

As with the previous technical reports, the building code used for the final report was the 2006 International Building Code (IBC), and loads were determined using the American Society of Civil Engineers (ASCE) 7-05. The steel framing was designed referencing the American Institute of Steel Construction (AISC) Manual for Steel Construction, 13th Edition. Additionally, the composite steel deck was selected using the Vulcraft Steel Roof and Floor Deck Catalog based on the Steel Deck Institute's (SDI) standards. The following factored load combinations from Chapter 2 of ASCE 7-05 were considered during the redesign:

(Note: D_i, F, F_a, H, R, T, & W_i are assumed to be zero)

1.4D 1.2D + 1.6L +0.5(Lr or S) 1.2D + 1.6(Lr or S) + (L or 0.8W) 1.2D + 1.6W + L + 0.5(Lr or S) 1.2D + 1.0E + L + 0.2S 0.9D + 1.6W 0.9D + 1.0E

Materials

Structural Steel

W-Shapes: ASTM A992 Shear Studs: ASTM A490 Base Plate: ASTM A572

Concrete (Below Grade) (28 day compressive strength)

Elevated Slabs on Metal Deck: 3500 psi Elevated Slabs and Beams: 5000 psi Columns, Shear Walls: 7000 psi Basement Walls, Site Walls: 7000 psi Slab on Grade, Footings, Grade Beams: 4000 psi

Reinforcement

Welded Wire Fabric: ASTM A185 Reinforcing Bars: ASTM A615, Grade 60

Design Procedure

The first step considered in the design of the new substructure was the layout of the column grid and framing. Because of the strict requirements for usable floor area of the required laboratory

spaces on the typical floors, and the location of the individual pieces of imaging equipment on the lower floors, it was determined that it was not necessary to change the bay sizes or column grid. Next, based on the determined floor loads and the typical spans between beams, a composite deck was selected. After this, the computer modeling software RAM Structural System was utilized to model the existing conditions below grade, and the new steel superstructure above grade. Once the beam sizes were generated with the appropriate number of shear studs, hand calculations were done to check the validity of the designs. These

Figure 4.1 - RAM Model

Chapel Hill, NC

calculations can be found in **Appendix D**. Columns were also sized using RAM and checked by hand, which can be found **Appendix E**.

Once the beams and columns were designed, the lateral system was then developed. Since there were no conflicts with architectural requirements, the previous lateral system being shear walls, braced frames were chosen as the new lateral system with shear walls continuing below grade. Because eliminating the shear walls below grade was not an option, the location of the braced frames simply picked up where the shear walls stopped at the first floor. As far as the design method is concerned, again RAM was used to determine the sizes, and the validity of these sizes was checked by hand. These calculations can be found in **Appendix F**. Serviceability requirements were also checked to make sure they were not exceeded.

Finally, preliminary calculations were done using RAM Structural System to investigate the effects of the structure on the foundation. However, the result of this analysis determined that it was not necessary for a complete redesign. The reasons why are included in the foundations section of the report.

Design Loads

Gravity Loads

As stated in Technical Report one, the determination of gravity loads for the existing structure by Mulkey Engineers and Consultants was done using the 2009 North Carolina State Building Code (2006 International Building Code with Revisions), which adopts ASCE 7-05 for its minimum design loads for buildings. The final report also uses ASCE 7-05 as the main reference in accordance with the requirements of AE Senior Thesis. The only addition to Table 1 from previous technical reports is the addition of the new composite slab and deck.

Table 1 -Gravity Loads							
Description	Mulkey	ASCE 7-05					
DEAD (DL)							
Reinforced Normal Weight Concrete	150 pcf	150 pcf					
Slab + Deck	65 psf	65 psf					
LIV	E (LL)						
Roof	30 psf	20 psf					
Offices	50 psf	50 psf					
Public Areas, Lobbies	100 psf	100 psf					
Laboratories	100 psf	60 psf					
Corridors, 2nd & Above	100 psf	100 psf					
Corridors Ground	100 psf	100 psf					
Stairs	100 psf	100 psf					
Catwalk	40 psf	40 psf					
Storage	125 psf	125 psf					
Heavy File Storage	200 psf	250 psf					
Mechanical Rooms	150 psf	150 psf					
Level B1	150 psf	N/A					
SNO	OW (S)						
Snow	16.5 psf	16.5 psf					
SUPERIMI	POSED (SDL)						
Finishes, MEP, Partions	25 psf	25 psf					
Bathroom Terrazo	40 psf	N/A					
Lobby Terrazo	60 psf	N/A					
Mechanical Courtyard	300 psf	N/A					
3T MRI Room	250 psf	N/A					
7T Sheilding	75 psf	N/A					
Hot Cells	350 psf	N/A					
Water Tank	350 psf	N/A					

Lateral Loads

Wind loads were also previously determined in Technical Report 1 using ASCE 7-05 Section 6.5, which describes Method 2 – Analytical Procedure. The variables used and the calculations for this analysis are located in **Appendix B**. Seismic loads were also previously calculated in Technical Report 1 using chapters 11 and 12 of ASCE 7-05 for the existing concrete structure. Because of the change in the framing from concrete to steel though, and the use of lightweight concrete for the new floor slabs, the seismic loads had to be recalculated using the new material weight takeoffs. The calculations for the new seismic loads can be found in **Appendix C**. However, because of the decrease in the weight of the building the wind is now the controlling load case in both the north/south and east/west directions as seen in **Figure 4.2** and **Figure 4.3** below.

Figure 4.2 - North/South Wind Loads

Figure 4.3 - East/West Wind Loads

Design Process

Gravity Framing

Composite Beam, Girder and Deck Design

The composite deck was selected using the Vulcraft Deck Product catalog which references the Steel Deck Institute's standards. Three factors were considered during the selection process: fire rating of the floor system, superimposed live load, and the max unshored span of the deck. First, it was determined by code that a restrained assembly fire rating of 2 hours is required of the floor system. Since the deck will be protected on each floor though by either an acoustical tile, gypsum board or spray tile, it was determined that a 1.5", 2", or 3" fluted deck could be used. Next, using chapter 4 of ASCE 7-05, it was determined that for the above grade floors (1-7), a live load of 100 psf be applied for the laboratory and corridor spaces, but it can reach as much as 200 psf in the heavy file storage areas. Because of these loads, and a max clear span of 9'-0" between beams, it was determined that the best solution would be a 2", 20 gage deck with 4 ¼" lightweight concrete. Vulcraft's 2VLI20 deck type was used for the design. The max unshored clear span for a 3 span condition was then checked to make sure the deck would not fail during construction. The pages used for the selection from the Vulcraft catalog can be found in **Appendix A**.

Using RAM Structural System, the composite beams were sized with the required number of shear studs using the Load and Resistance Factor Design (LRFD) method from the AISC 13^{th} edition steel construction Manual. The controlling load combination of 1.2D + 1.6L was used to design the members and deflection limits were set based on the criteria below:

Live Load Deflection:	$\Delta_{\rm LL} = L/360$
Total Load Deflection:	$\Delta_{\rm TL} = L/240$
Pre-Composite Deflection:	$\Delta_{\rm TI} = L/360$

After the first optimization of the beam sizes, all of the members were W18's or less, except for 7 girders that were W24x68's which supported the largest bays in the middle of the floor plan. This was unacceptable since the goal was to reduce the overall floor depth from the original concrete design.

Since adding another row of columns to pick up the load was not an option due to the fact that they would interfere with crucial laboratory space, two options were considered, camber and increasing the plastic section modulus of the girders. Research was conducted to see which of the two methods would be more cost effective. Presentation slides from Dr. Louis Geschwindner estimated the cost of cambering a single member to be \$30-\$75 while the cost of increasing the weight was approximately \$0.40 per pound. Initially, W18x86's where chosen so that the maximum floor depth would be 24 ¼", 5 ¾" thinner than the existing concrete design. Upon further analysis though, the design failed deflection limits. Not wanting to increase the floor depth another 3" to W21's for half

Chapel Hill, NC

of the floor plan because of 7 girders, the use of camber was also introduced. With a camber of ³/₄" though, the minimum size that could be used was a W18x97. Assuming that it costs \$75 per beam to camber, plus another \$14 dollars for the weight increase over the original optimized W24 sections, it will cost roughly an extra \$620 dollars to use the W18x97's. This is not significant when compared to the total cost of the building.

After the beams were finalized in RAM, spot hand calculations were done to confirm these sizes. As mentioned earlier these supporting calculations can be found in **Appendix D**. The floor plans with the rest of the beam and column sizes can be found in **Appendix G**.

Below, **Figure 5.1** shows a typical floor plan with the composite beams and girders. The size of the member is listed first, followed by the required number of shear studs in parentheses, and finally the camber if there is any.

Liskite(8) WUISKIte(8) Liskite(8) WUISKIte(8) Liskite(9) Liski	4 (8) — MIZCI4 (8)
	4 (8) — WIZX14 (8) \oplus
	4 (8) — WIZZ14 (8) — WIZZ14 (8)
الحماد (الق) المحمد (الق)	4 (8) — WIZX14 (8) — WIZX14 (8) — WIZX14 (8)
D 3 3 3 4 4 5 5 5 1 4 5 5 5 7 5 7 5 5 5 7 5 5 5 5 5 5 5 5 5	4 (8) - MIZX14 (8)
	4 (8) — WIZX14 (8) — WIZX14 (8) —
F 3 3 3 Wine 36 7 Ci 1 2 3 3 Wine 36 7 Ci 3 3 Wine 36 1 3 4 5 1 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	4 (8) — WIZX14 (8) — WIZX14 (8)
الالحال اللحال الحال الحا	4 (8) + W12X14 (8) + W12X14 (8) +
	4 (8) — WITZZ14 (8) <u>—</u> WITZZ14 (8)
تحداء (0)	4 (8) + W12x14 (8) + W12x14 (8) +
	4 @) + W12x14 @) + W12x14 @) +
10×12 (10×12 (15×16 (15×16)	14 (8) 🕂 Wr12x 14 (8) 🕂 Wr12x 14 (8) 🐥 Wr12x 14 (8) 🚆 💦 🔡
(대원) : : : : : : : : : : : : : : : : : : :	a zio, fisuo di zio, fisuo da zio, fisuo da dio
	a (10) - Mariza la (10) - Mariza la (10) - Mariza la (10) a (10) - Mariza la (10) - Mariza la (10) - Mariza la (10) -
	2 (10) + Sun 422 (10) + Sun 422 (10) + Sun 422 (10)
	2 (10 NI 1422 (10) W1 4422 (10)
1.3 wizuera @ @m4x22(10) @m4x22(10) @m60@@m030)m14x22(10) wirezera wizuera wizera wirezera wirezer	2 (10) WILCE (10) WI 4422 (10) WILCE (10)
	2 (10 🖉 W1422 (10 🖉 W14x22 (10 W14x22 (10)
$\left(K \right) = \frac{1}{2} + \frac{1}$	2 (10) w8x10 (6) w14x22 (10) w14x22 (10)
N th inizie (de) th inizie (de) th inize (de) th inize (de) th inize (de	con − Manana – muuza con sa ⁶⁰ 01422 (1020 18
	2.00
	1.00 등 (Ewizate (10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
Contaction	4 (8) 은 Witzig (10) 문 14/12x19 (10) 은 Witzig (10) 은 4 (8) 은 15/112x14 (8) 은 15/112x14 (8) 은 15/112x14 (8) 은 15

Figure 5.1- Typical Floor Plan

Column Design

The load path for the columns starts with the gravity loads in the building being carried by the slab and deck, and then the beams transfer the load to the girders, which in turn transfer the load into the columns and down to the building's foundation. Again, the columns were designed using RAM, with live load reduction according to ASCE 7-05 Section 4.8 and 4.9. The goal was to minimize the architectural impact and have the depths of the column be as small as possible without a substantial loss of efficiency. Also, column splices were designed for construction purposes. The result is a column splice at every second floor starting at the first floor. Repetition of sizes was also used again to cut down on the number of different sections required for fabrication. Repetition was also used to reduce confusion during erection in the field.

The AISC Steel Manual was used to spot check several of the column designs by hand. These calculations can be found in **Appendix E**. The RAM model with a visual representation of the code check can be seen in **Figure 5.2**, below.

Figure 5.2 - Column Layout with Code Check

Lateral Framing

Introduction and System Choice

Braced frames, moment frames, and shear walls were all considered as the lateral system for the steel redesign. As stated earlier, shear walls were the original lateral force resisting system in the concrete structure. While connections from the steel framing to the existing shear walls was briefly investigated, their usage was eliminated since they had already been analyzed in techincal report 3. Moment frames were also considered, and a preliminary trial was run in RAM, but there was sizeable drift when the moment frames were placed in the same location as the shear walls. The location was important because of arcitectural restrictions of placing the lateral frames anywhere around the perimeter of the building. Furthermore, conversations with design professionals indicated that the moment frames were typically the most expensive system due to laber and didn't provide as much resistance as the others.

Therefore, braced frames were chosen as the lateral system for the steel redesign. Again, the main goal was to keep the braced frames in the same location as the shear walls. With an entire glass façade, and with the goal of minimizing the architectural impact of the redesign, placing the braced frames around the perimeter wasn't an option. Also, since the shear walls would pick up again below grade, it made the most sense to try and keep the lateral systems as consistent as possible. Unfortunately, the way the shear walls are laid out is not typically the same way braced frames would be placed. The shear walls were convenianetly placed around elevator and stairwall cores, and mechanical closets, thefore resulting in many clusters or groupings.

Modeling Assumptions and Considerations

Again, RAM Structural System was used to model the MLFRS. The paramaters for both wind loading and seismic loading were calculated by hand for the input. The following is a list of modeling assumptions and requirements for the RAM Frame model.

- A rigid diagphram was model at every floor with the lateral load being assigned to the diaphragm
- As mentioned earlier, load combinations were generated and used in accordance to all relevant codes.
- Lateral forces were applied to the center of mass
- Braces were assumed to be pinned at each end
- P-Delta effects were taken into account with the model according to ASCE 7-05

UNC-IRB

Chapel Hill, NC

UNC- IRB

Initial Design

After running a preliminary analysis in RAM with the braced frames substituted for the shearwalls, it was clear that the frames around the mechanical closets could be eliminated. The final configuration can be seen below in **Figure 5.3** and **Figure 5.4**.

Figure 5.3 – 3D Model with Braced Frames

Figure 5.4 - Plan View of Lateral Frames in Red

Chapel Hill, NC

An initial attempt was made to configure the braced frames around existing doorways, but because of the variation of door locations and the amount of time permitting to design each individual brace this attempt was compromised. Instead, research was conducted including discussion with design professionals to determine the most efficient frame pattern and connection. Special Concentric Brace Frames (SCBF's) were chosen over Buckling Restrained Braced Frames (BRBF's). The reasons being, that BRBF's are still relatively new and not as common as SCBF's. SCBF's also have multiple bracing configurations to choose from and multiple ways to design the seismic connections. Also, BRBF's tend to cost more and their complexity in modeling makes it very hard to manage drift

control. SCBF's were also chosen over Ordinary Concentric Braced Frames (OCBF's) due to the better ductility of the system. Though more expensive, the SCBF's provided more resistance to drift, and therefore made the most sense when having to follow a very specific lateral frame layout plan.

Finally, the style of the SCBF's had to be chosen. Since IRB is not in a high seismic zone, the conventional chevron (V braces) could have been used in this case. Again, the bracing system chosen had to maximize strength and drift control with the given frame locations and a preliminary trial in RAM determined the V braces to be inadequate. Therefore the 2 story "X" or modified "X" was investigated. The "X" configuration dissipates the energy along the height of the frame during an earthquake, and the braces buckle simultaneously at all floors. It is also one of the most efficient designs in strength and drift control. Therefore, this was the configuration chosen for lateral system.

Final Design

The goal when assigning shapes in RAM was to be as consistent as possible and to again utilize repetition. Initially, the goal was to break down each frame elevation into three sections and have only three sets of beam, column and brace sizes, but this proved to be unfeasible because of the variation of loads on the frames. Also, since one of the main goals throughout the design of the steel structure has been to minimize architectural impact, the maximum column sizes used in the frame design were W18's. Although this is 2" deeper than the largest shear walls used in the original design, the gravity columns in the steel redesign are much smaller than the concrete ones and a lot of space has been gained there.

The braces, however, took on several iterations before satisfactorily meeting strength and drift requirements. At first, a combination of W16's and W14's were used for consistency in shapes and repetition. After several attempts though, the use of I-sections proved not viable for the braces. Therefore, the decision was made to use hollow structural steel (HSS)

Figure 5.5 - Typical Modified "X" Braced Frame

shapes. The HSS shapes proved more efficient in strength, but the drift was still controlling the design, and was over the recommended limit. After several more attempts at increasing sizes, finally it was determined that two braced frames on the west face of the building could be combined to one larger one, which dropped the drift well within the accepted limit. An elevation of a typical lateral frame can be seen in **Figure 5.5**. A hand calculation spot check confirming the brace designs along with the rest of the later frame elevations can be found in **Appendix F**.

Serviceability

As stated previously, drift was the controlling factor for the lateral design. After the lateral analysis in RAM though, seismic was no longer the controlling load case in the x-direction. Instead, with the new building weight, wind was now the controlling load case in both directions. The seismic drift recommended limits still need to be checked to verify that serviceability is met in the event of an earthquake. The allowable seismic story drifts for IRB are determined by Table.12-1 in ASCE 7-05 based on Occupancy Category III. The two criteria considered for lateral drift and displacement are:

Wind: h/400 Seismic: 0.020h_{sx}

RAM Frame was used to determine the drifts from both the wind and seismic loads. The drifts determined from the wind analysis were used as calculated in the evaluation while seismic drifts were amplified according to Section 12.8 in ASCE 7-05 using the following equation:

$$\delta x = \frac{C_d \, x \, \delta_{xe}}{I}$$

A summary of the story drift and the overall drift for both wind and seismic loads in the East-West and the North-South directions can be found in **Table 2**, below.

Table 2 - Story and Overall Drifts for Steel Redesign														
Floor	Floor Height Above Height Ground-		Wind North/South Drift (in)		Wind East/West Drift (in)		Wind Allowable Drift (in)		Seismic North/South Drift (in)		Seismic East/West Drift (in)		Seismic Allowable Drift (in)	
	z (ft)	(11)	Story	Total	Story	Total	Story	Total	Story	Total	Story	Total	Story	Total
Roof	162.00	14.33	0.38	2.70	0.27	1.93	0.43	4.86	0.20	1.41	0.22	1.49	3.44	38.88
Mech Mez.	148.66	16.66	0.33	2.43	0.24	1.74	0.50	4.46	0.18	1.31	0.20	1.37	4.00	35.68
8	130.00	16.00	0.33	2.06	0.24	1.47	0.48	3.90	0.18	1.08	0.19	1.15	3.84	31.20
7	114.00	16.00	0.33	1.73	0.24	1.23	0.48	3.42	0.18	0.89	0.19	0.96	3.84	27.36
6	98.00	16.00	0.31	1.39	0.22	0.99	0.48	2.94	0.16	0.71	0.17	0.76	3.84	23.52
5	82.00	16.00	0.29	1.06	0.21	0.76	0.48	2.46	0.15	0.53	0.17	0.57	3.84	19.68
4	66.00	16.00	0.24	0.75	0.16	0.54	0.48	1.98	0.12	0.37	0.12	0.40	3.84	15.84
3	50.00	16.00	0.22	0.46	0.17	0.33	0.48	1.50	0.10	0.22	0.12	0.23	3.84	12.00
2	34.00	16.00	0.22	0.22	0.17	0.17	0.48	1.02	0.10	0.10	0.12	0.12	3.84	8.16

Foundations

After running preliminary designs in RAM, it was the determined that the reduction in weight in the structure was not significant enough to do a complete redesign of the foundations. While, the existing spread footings could be reduced in size, the mat foundations supporting the lateral frames and imaging equipment would remain approximately the same. As far as overturning is concerned the previous analysis done in technical report 3 supports the assertion that this is not of concern. In order for overturning to occur the entire mat foundations which connect the majority of the building would have to rotate. If more time permitted, an advance mesh analysis in RAM concept would be suggested to confirm these assertions.

Structural Depth Summary

The main goal of introducing a steel structural system while maintaining architectural concepts was achieved with the redesign. The floor system was reduced from 30" to 24 ¹/4", opening up 5 ³/4" of vertical trade space. Columns were also kept to a minimal 14", as compared to the typical 24"x24" columns in the existing structure. While this does not appear to be significant, the amount of space gained can be utilized by the architects. As far as the lateral system was concerned, we were able to reduce the number of lateral frames while still achieving both strength and drift requirements. SCBF's were chosen as the main lateral force resisting system, and it was also determined that wind will control the serviceability guidelines in both the north-south and the east-west directions. With all of the gravity and lateral designs, hand calculations were completed to confirm the results that were determined with RAM.

Breadth Topics

Construction Management Breadth

One of the main reasons the Imaging Research Building was switched from concrete framing to steel framing above grade was to determine if the use of steel could reduce overall construction cost and schedule time for the building. An analysis of the two systems was conducted to make this determination. As a result, the existing structure cost and schedule will be compared to the proposed steel structure, and a decision on the feasibility of the proposal will be presented.

Site

As mentioned previously, the Imaging Research Building is located on the University of North Carolina's Chapel Hill campus. The major access points for delivery of materials are off of route 15/501 and state road 86. As shown in Figure 6.1, the site is tight, with the adjacent Lineberger Cancer Center tight to the north side of the building. Because of the small site, staging will also be difficult for the construction team, with only space on the west side of the site. Finally, construction noise and vibration will need to be considered again because of the Lineberger Cancer Center in the immediate vicinity.

<image>

Figure 5.1 - IRB Construction Site

Construction Methods

The goal for the construction of the steel framing is to be as fast and efficient as possible. One of the benefits of steel over concrete is that, by the nature of the material, erection time will already be lessened due to the ease of fabrication. Another technique to speed the erection time is the use of repetition in member sizes. This was planned for in advance during the design of the gravity and lateral systems, and therefore the field coordination time and the chances of mistakes have been greatly reduced. Another factor to consider was if the structure would be erected by sections or floor-to-floor construction. After some research into construction methods in the central North Carolina area, constructing each floor in its entirety before proceeding was selected as the construction method of choice.

Costs

A detailed cost analysis was performed on both the existing concrete structure and the new steel design. As an approximation, 2009 R.S. Means Construction Cost Data online catalog was use to make an initial square foot cost estimate. In order to produce this initial estimate, the parameters of building area, building type, location, city cost index, and building material had to be set. Some assumptions had to be made in the form of a simple building model with basic components, but the program was then able to calculate costs for both the substructure and the superstructure. After analyzing each report, the total cost estimates were determined not to have enough deviation or significance for inclusion in this report. However, the different material costs for floor construction was a presentable comparison. The floor and roof construction costs for each material are presented in **Table 4.1**.

Table 4.1 - Square Foot Cost Estimate Comparison							
	Floor Construction Roof Construction Total Building						
Building Material	Cost	Cost	Cost				
Concrete	\$4,360,500.00	\$295,500.00	\$113,650,500.00				
Steel	\$3,850,000.00	\$176,500.00	\$98,750,500.00				

While the initial square foot cost estimate was a good first attempt, a more detailed estimate was warranted. This involved a more in-depth takeoff for the respective systems. The goal was to produce an "apples-to-apples" comparison of the two systems. To achieve this, for both the concrete and the steel designs, only the beams, girders, columns and lateral systems above grade were priced.

The existing concrete system was the first to be analyzed. A takeoff was done of a typical floor to use as a base figure, and the remaining floors were estimated by square footage. R.S. Means was used to obtain prices for all of the concrete building components for both the columns and beams, including placement, formwork, concrete, and reinforcement.

As far as the steel redesign is concerned, again the main structural members were included in the pricing. The W shapes for the beams, columns and girders, and the HSS shapes for the lateral braces were all taken into account. A takeoff from the RAM model created for the gravity and lateral system designs was used to determine the quantity and length of the shapes.

After the unit amount for each building component for both systems was determined, R.S. Means was used to develop material, labor and equipment costs. A summary of these costs for both the concrete and steel systems can be found in **Table 4-2**. The more detailed tables of both the concrete and the steel estimates can be found in **Appendix H**.

Chapel Hill, NC

Table 4.2 - Structural Material, Labor, and Equipment Totals						
Steel						
Summary	Cost Per Square Foot(\$/SF)	Total Cost(\$)				
Material Total	\$40.26	\$3,351,091.08				
Labor Total	\$2.09	\$174,227.83				
Equipment Total	\$1.87	\$155,824.62				
Total	\$44.22	\$3,681,143.53				
Concrete						
Summary	Cost Per Square Foot(\$/SF)	Total Cost(\$)				
Material Total	\$24.77	\$2,062,368.33				
Labor Total	\$32.26	\$2,685,458.12				
Equipment Total	\$0.95	\$79,250.54				
Total	\$57.99	\$4,827,076.98				

Scheduling

A schedule for each structural system was developed using the time acquired based on crew labor and unit –amounts. For the construction of the existing concrete framing of IRB, the building was divided into 4 zones. These zones were created based on the limit of the area of any single slab pour. This is shown in **Figure 7.2**, below.

Figure 7.2 - Concrete Framing Pour Zones

Zones were also required for the steel framing. Instead of 4 zones required for the concrete structure, the steel structure only needed 2 zones. This is because the metal deck used for the slabs in the steel framing is stronger than the plywood forms assembled on-site for the concrete. Again, the zones required for the steel construction can be found in **Figure 7.3**, below.

Figure 7.3 - Steel Framing Pour Zones

As mentioned previously, the construction method used for the both the concrete and steel structure is floor-by-floor construction. As a result, all of the members and slabs had to be formed, poured, and cured, before the slabs were formed, poured, and cured. Since the above grade faming was the only thing being changed, it was decided that a full schedule was not needed. Instead, since the only parts of the process being analyzed was actual construction time for the framing, and not lead time, the overall estimated construction duration for each system is summarized below.

Construction Management Summary

The detailed estimated of both framing options provided and accurate basis for comparing the two. The cost of the existing concrete system was estimated to be approximately 4.83 million, while the cost for the steel framing was estimated to be 3.68 million. As far as erection time is concerned, the steel system had the advantage taking only 225 days versus 315 days for concrete, but the use of more crews (other than the suggested amount by R.S. Means) would increase this schedule, increasing the cost as well.

UNC- IRB

Chapel Hill, NC

Enclosure Breadth: Blast Glazing

Introduction

In today's society, terroristic attacks have become ever more prevalent. While the structure itself is very important to withstand such explosions, other building components such as the façade need to be taken into account. As of late, glazing has been at the forefront of research into blast protection, and it's only expected to grow in the future. According to a December, 2008 article in glass magazine, "The U.S. government will be investing great amounts of capital into protective glazing systems during the next 10 to 15 years to make the changes necessary to their existing buildings and for all new construction (Jeske, Glass Magazine)." Therefore, it is not a stretch to think that a building such as IRB could become a target for potential terrorists or even accidental explosions as well. Therefore IRB's curtain wall system will be redesigned to resist a potential blast load.

There are two major codes governing blast design, GSA/Interagency Security Committee Security Design Criteria and the U.S. Department of Defense Unified Facilities Code UFC 4-010-01, Minimum Antiterrorism Standards for Buildings. The ISC provides a graphic representation of how the effects of glass during an explosion equate to an equivalent hazard level. The numbers in **Figure 7.1** correlate to the performance condition in **Figure 7.2**. The DoD's criteria has a different set of requirements than the ISC as seen in **Figure 7.3**.

Figure 7.1 - Location of Glass during Explosion

Chapel Hill, NC

Performance Condition	Protection Level	Hazard Level	Description of Glazing Response
1	Safe	None	Glazing does not break. No visible damage to glazing or frame.
2	Very High	None	Glazing cracks but is retained by the frame. Dusting or very small fragments near sill or on floor acceptable.
За	High	Very Low	Glazing cracks. Fragments enter space and land on floor no further than 3.3 ft. from the window.
3b	High	Low	Glazing cracks. Fragments enter space and land on floor no further than 10 ft. from the window.
4	Medium	Medium	Glazing cracks. Fragments enter space, land on floor and impact a vertical witness panel at a distance of no more than 10 ft. from the window at a height no greater than 2 ft. above the floor.
5	Low	High	Glazing cracks and window system fails catastrophically. Fragments enter space impacting a vertical witness panel at a distance of no more than 10 ft. from the window at a height greater than 2 ft above the floor.

Figure 7.2 - Glazing Response According to ISC

Protection Level	Hazard Level	Description of Glazing Response
High	None	Glazing does not break. Doors will be reusable.
Medium	Minimal	Glazing will fracture, remain in the frame and results in a minimal hazard consisting of glass dust and slivers. Doors will stay in frames, but will not be reusable.
Low	Very Low	Glazing will fracture, potentially come out of the frame, but at a reduced velocity, does not present a significant injury hazard. Doors may fail, but they will rebound out of their frames, presenting minimal hazards.
Very Low	Low	Glazing will fracture, potentially come out of the frame, and is likely to be propelled into the building, with the potential to cause serious injuries. Doors may be propelled into rooms, presenting serious hazards.
Below Anti- Terrorism Standards	High	Doors and windows will fail catastrophically and result in lethal hazards.

Figure 7.3 - Glazing Response According to DoD

The DoD code references two ASTM specifications that will be used for this redesign, ASTM F 2248-03 and ASTM E 1300-04. In order to develop a load that could be used for the design, ASTM F 2248-03 provided a method of conversion from a TNT charge to a 3-second design pressure. ASTM E 1300-04 was then used to design a glass unit that has a load resistance greater than the blast load.

The first step in determining the equivalent three second blast design pressure was to determine the standoff distance and the charge size in TNT pounds. Since a security plan wasn't available, the standoff distance was determined using existing civil drawings. Since Mason Farm road approaches IRB at an angle the distance from the curtain wall varies, but the average standoff distance was determined to be approximately 50 feet.

As far as charge size is concerned, a guide developed by the Unite State Department of Transportation (USDOT) was utilized to determine that the scenario of attack. An assumption was made that a charge in a small compact sedan would be most likely. This has an equivalent TNT charge weight of 220 pounds. Using ASTM F 224-03 it was determined that the 3-second equivalent design pressure was approximately 250 psf or 11.96 kPa (see **Appendix I** for charts).

Device	Description	Charge Weight (TNT Equiv. Ibs)
	Pipe Bomb	5
	Suitcase	50
	Compact Sedan	220
	Full Size Sedan	500
	Passenger / Cargo Van	1,000
	Box Truck	4.000
	Semi-Trailer	40.000

Figure 7.4 - Equivalent Charge Guide

The next step was to determine the effective area to be designed for, and the glass type to be used. Since the largest opening will yield the highest forces, the largest square area between the mullions was determined from the architectural drawings, 5 ¹/₂' by 2'. As far as the glazing, heat strengthened glass, annealed glass, and fully tempered glass were all possible option. While more expensive, heat glass was chosen since it is not only stronger than the annealed glass, but it is also more attractive then the fully tempered.

Load Resistance is determined by the following equation. The factors of 2 and 1.8 are based on the fact that the glass has two equivalent lites and that is heat strengthened, respectively.

$$LR = 2 \ge 1.8 \ge NFL$$

Assuming that all four edges of the glass are supported by mullions, **Figure 7.5** from ASTM E 1300-04 was used to determine the non-factored load (NFL).

Chapel Hill, NC

Figure 7.5 - Non-factored Load Chart

After several iterations, it was determined that the most efficient design would be a 5/16" heat strengthened, laminated insulated glass. According to the equation above this design provides a load resistance of 18 kPa for the area of the glazing on IRB's façade, compared to an equivalent load of 11.96 kPa – determined from and equivalent 220 pound charge at a standoff distance of 50 feet. As far as the mullions, frames, and connections are concerned, mullions and frames are to be designed to the specified blast load with a deflection limit of L/160 while connections need to be able to withstand two times the capacity of the glass.

Enclosure Breadth: Blast Design Summary

Using the Depart of Defense's Unified Facilities Code, the glass façade on the south face of IRB can be designed for blast loading to effectively protect the occupants of the building. 5/16" heat strengthened, laminate panels between mullions will effectively withstand the equivalent TNT charge of 220 pounds at a standoff distance of 50 feet. While certainly an increase in cost than the existing façade, in today's heightened risk of terroristic attacks, it is a consideration that might be of value.

Conclusions and Final Remarks

This thesis study was conducted to investigate the feasibility of switching from a concrete structure with 6" one-way cast-in-place slabs to a steel composite framing structure. The main goal was to maintain the key architectural concepts while introducing the new system. Both the gravity and lateral systems were redesigned, along with a cost and schedule analysis, and a redesigned blast resistant façade.

RAM Structural System was used to reduce the floor system from 30" to 24 ¹/₄", opening up 5 ³/₄" of vertical trade space. This is a result of choosing a 2" composite deck with 4 ¹/₄" lightweight concrete, and girders limited to 18" in depth. Columns were also kept to a minimal 14" in depth, compared to the typical 24"x24" columns in the existing structure. Also, as far as the lateral system is concerned, the shear walls were replaced with SCBF' as the main lateral force resisting system above grade. Doing this enabled the number of lateral frames to be reduced while still meeting both strength and drift requirements. With all of the gravity and lateral designs, hand calculations were completed to confirm the results that were determined with RAM.

An overall cost analysis and schedule comparison for the two framing systems was also completed. An initial square foot cost estimate was done followed by a detailed estimate of both options. To make an "apples-to-apples" comparison, only the beams and girders, columns, and lateral frames were evaluated. The cost of the existing concrete system was estimated to be approximately 4.83 million, while the cost for the redesigned steel framing was estimated to be 3.68 million. As far as erection time is concerned, the steel system had advantage taking only 225 days versus 315 days for concrete, but the use of more crews (other than the suggested amount by R.S. Means) would increase this schedule, increasing the cost as well.

The glass façade on the south face of IRB was designed for blast loading to effectively protect the occupants of the building. It was determined that 5/16" heat strengthened, laminate panels between mullions will effectively withstand an equivalent TNT charge of 220 pounds at a standoff distance of 50 feet. This is the equivalent of a roadside attack by a small compact vehicle. A redesign of this magnitude would certainly be an increase compared to the existing façade, but in today's heightened risk of terroristic attacks, it is a consideration that might be of value.

Overall, it was determined that the steel structure would be a viable alternative to the existing concrete design. Based on this evaluation, with the shorter construction time, and reduction in costs, the steel composite framing should have certainly have been an option while the design team was making their preliminary designs. The drawbacks, as noted in the proposal, are the heavier live loads and the slab penetrations that are inevitable. These constraints play to the favor of the existing concrete structure.

Acknowledgements

First, and foremost, I would like to personally thank all of my friends and family who have supported me during this journey. It has not always been easy, but their support has kept me going throughout the last five years. In particular, I would like to thank these fellow AE's:

- Zachary Yarnall
- Joe Hirsch
- Shane Boyer
- Shane Flynn

In addition, I would like to extend a special thanks to all of my professors at The Pennsylvania State University, in particular:

- Prof. M. Kevin Parfitt
- Prof. Robert Holland
- Dr. Thomas Boothby
- Dr. Louis Geschwindner

I would also like to thank the following companies and individuals:

- Mulkey Engineers and Consultants
 - Valoree Eikinas
 - Adam Rowland
 - Steve Olejar
 - Brent Blackburn
- Perkins + Will
 - Christopher Nesbit
- Newcomb and Boyd
- Choate Construction

Finally, I would like to thank IRB's owner, the University of North Carolina, for without their permission, this thesis wouldn't be possible.
Bibliography

- 1. AISC 13th *Edition Steel Construction Manual* published in December 2005 by the American Institute of Steel Construction
- 2. ASCE/SEI 7-05 *Minimum Design Loads for Buildings and Other Structures* published in 2006 by the American Society of Civil Engineers
- 3. IBC 2006 *International Building Code* published in January 2006 by the International code Council, Inc.
- 4. Geschwindner, Louis F. Unified Design of Steel Structures. New York: Wiley, 2008.
- 5. Vulcraft Steel Roof and Floor Deck published 2007 by The Nucor Corporation.
- 6. Jeske, Stewart. *Antiterrorism: Blast-Resistant Glazing Systems and the Moving Target*. Online. 4 Dec 2008. Retrieved April 5, 2010. <u>www.glassmagazine.com</u>
- 7. Waier, Philip R. R.S. Means Building Construction Cost Data 2010. 68th ed. Published 2009 by R.S. Means, 2008.

Chapel Hill, NC

Appendix A: Composite Deck Design

Chapel Hill, NC

VULCRAFT

$--\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-$	
--	--

FLOOR-CEILING ASSEMBLIES WITH COMPOSITE DECK

Restrained Assemblv	Type of	Concrete Thickness &	U.L. Design	Classified D	eck Type	Unrest Bea
Rating	Protection	Type (1)	No. (2,3,4)	Fluted Deck	Cellular Deck (5)	Rat
	Linguisticated Deals	0.1/2" []]M	D914 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	
3/4 Hr.	Unprotected Deck	2 72 LVV	D916 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5
	Exposed Grid	2 1/2" NW	D216 +	1.5VL,1.5VLI,2VLI,3VLI	2VLP, 3VLP	
		2" NW&LW	D743 *	2VLI,3VLI	2VLP, 3VLP	1,1.5
			D703 *	1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	
	Cementitious	2 1/0" NIM/8J M/	D712 *	3VLI	3VLP	
		2 72 INVOLVV	D722 *	2VLI,3VLI	2VLP, 3VLP	1,1
			D739 *	1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2
		AN A 11/01/11/	D759	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5
		2" NW&LW	D859 *	2VLI,3VLI		1,1.5
	Spraved Fiber		D832 *	1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP 2V/I P	1,1.0
4 1.4%	oprayour isor	2 1/2" NW&LW	D847	2/1,3/1	2\/I D 3\/I D	114
T Hr.			D050	2/13/11	2VLP 3VLP	111
			D902 #	15VL15VL12VL13VL1	1 5VLP 2VLP 3VLP	
			D914 #	15VL 15VL 2VL 3VL	1.5VLP. 2VLP. 3VLP	
		2 1/2" LW	D916 #	1.5VL.1.5VLI.2VLI.3VLI	1.5VLP. 2VLP. 3VLP	1,1.5
			D918 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	
	Unprotected Deck		D919 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	
			D902 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	
		0	D916 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.
		3 1/2" INW	D918 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	
			D919 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	
	Gypsum Board	2 1/2" NW	D502 *	1.5VL,1.5VLI,2VLI,3VLI	2VLP, 3VLP	
		2" NW&LW	D743 *	2VLI,3VLI	2VLP, 3VLP	1,1.
			D703 *	1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	
	Cementitious		D712*	3VLI	<u>3VLP</u>	
		2 1/2" NW&LW	D722 *	2VLI,3VLI	2VLP, 3VLP	1.15
			D739 *	1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,
			D/59	1.5VL, 1.5VLI, 2VLI, 3VLI	1.5VLF, 2VLF, 3VLF	1,1,
	Sprayed Fiber	2 INVV&LVV	0859	1 5//1 2//1 3//1	3VI P	11
11/2 Hr			D847 *	2/1.3/11	3VLP	1
172111.		2 1/2" NW&LW	D858 *	2/13/11	2VI P 3VI P	1.1.
			D871 *	2VLI.3VLI	2VLP. 3VLP	1.1.
			D902 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	
		3" LW	D916 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.
	Unnyatastad Dask		D919 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	
	Unprotected Deck		D902 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	
		4" NIM	D916 #	1,5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.
		4 1AAA	D918 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	
			D919 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	
	Exposed Grid	2 1/2" NW	D216 +	1.5VL,1.5VLI,2VLI,3VLI	2VLP, 3VLP	
	Gypsum Board	2 72 NW	D502 +	1.5VL,1.5VLI,2VLI,3VLI	2VLP, 3VLP	
		2" NW&LW	D743 *	2VLI,3VLI	2VLP, 3VLP	1.1.
		2 1/2" LW	D750 *	1 5//11 0//11 0//11	1 5\/I P 2\/I P 2\/I P	1.
			D702 *	1.5/1.2/1.3/1	1 5VI P 2VI P 3VI P	······
			D712 *	3\/11	3VI P	
			D716 *	1.5VI 2VI 3VI	2VLP. 3VLP	
0.11-			D722 *	2VI1.3VI1	2VLP. 3VLP	1.
2 mr.	Cementitious	2 1/2" NW&LW	D739 *	1.5VLL2VLL3VLL	1.5VLP. 2VLP. 3VLP	1,1.5
			D745 *	2VLI.3VL		1.1
			D750 *	1.5VLI.2VLI.3VLI		
			D755	1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.
			D759	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.
			D760 *	2VLI,3VLI		1,1.5,
		0.//- 1.1.4/	D730 *	2VLI,3VLI	2VLP, 3VLP	
		2 1/2" NW	D742 *	1.5//1.2//1.3//11		
	<u> </u>		0/42	1.0 4		

Chapel Hill, NC

Final Report

VULCRAFT

SLAB INFORMATION

Total Slab	Theo, Conc	rete Volume	Recommended
Depth, in.	Yd ³ / 100 ft ²	ft ³ / ft ²	Welded Wire Fabric
4	0.93	0.250	6x6 - W1.4xW1.4
4 1/2	1.08	0.292	6x6 - W1.4xW1.4
5	1.23	0.333	6x6 - W1.4xW1.4
5 1/4	1.31	0.354	6x6 - W1.4xW1.4
5 1/2	1.39	0.375	6x6 - W2.1xW2.1
6	1.54	0.417	6x6 - W2.1xW2.1
6 1/4	1.62	0.438	6x6 - W2.1xW2.1
6 1/2	1.70	0.458	6x6 - W2.1xW2.1

(N=14.15) LIGHTWEIGHT CONCRETE (110 PCF)

TOTAL		SDI	Max. Unsho	ored	Superimposed Live Load, PSF														
DEPTH	TYPE	1 SPAN	2 SPAN	3 SPAN	6'-0	6'-6	7'-0	7'-6	8'-0	8'-6	9'-0	9'-6	<u>(In.)</u> 10'-0	10'-6	11'-0	11'-6	12'-0	12'-6	13'-0
	2VLI22	8'-1	10'-3	10'-7	238	209	186	167	152	120	108	98	90	82	75	69	64	59	55
4.00	2VL120	9'-6	11'-8	12'-1	268	235	209	187	169	153	140	129	101	92	84	78	72	66	61
(t=2.00)	2VLI19	10'-10	13'-0	13'-2	297	260	230	206	185	168	153	141	130	121	93	86	79	73	68
30 PSF	2VLI18	11'-7	13'-7	13'-7	324	285	253	227	205	187	171	158	146	136	127	119	92	86	80
	2VLI16	12'-3	14'-3	14'-4	377	330	292	261	235	214	195	179	165	153	143	133	118	98	91
	2VL122	7'-8	9'-10	10'-2	276	243	216	194	155	139	126	114	104	96	88	81	75	69	64
4.50	2VLI20	9'-0	11'-3	11'-7	312	273	243	217	196	178	163	128	117	107	.98	90		77	72
(t=2.50)	2VLI19	10'-3	12'-5	12'-9	346	302	268	239	215	195	178	164	151	118	108	100	92	85	79
35 PSF	2VLI18	11'-2	13'-1	13'-1	376	331	294	264	238	217	199	183	170	158	147	116	107	100	93
	2VLI16	11'-7	13'-8	13'-10	400	384	340	303	273	248	227	208	192	178	166	155	123	114	106
	2VLI22	7'-4	9'-5	9'-9	315	277	247	197	176	159	143	130	119	109	100	92	85	79	73
5.00	2VLI20	8'-7	10'-9	11'-2	355	312	276	248	224	203	161	146	133	122	112	103	95	88	82
(t=3.00)	2VLI19	9'-9	11'-11	12'-4	394	345	305	272	245	223	203	187	147	135	124	114	105	97	90
39 PSF	2VLI18	10'-9	12'-9	12'-9	400	377	335	300	272	247	227	209	193	180	143	132	122	114	106
	2VLI16	11'-0	13'-1	13'-5	400	400	387	346	311	283	258	237	219	203	189	151	140	130	121
	2VLI22	7'-2	9'-3	9'-7	334	294	262	209	187	168	152	138	126	116	106	98	90	84	78
5.25	2VL120	8'-5	10'-7	10'-11	377	331	293	263	237	190	171	155	142	130	119	110	101	94	87
(t=3.25)	2VLI19	9'-6	11'-8	12'-1	400	366	324	289	260	236	216	198	156	143	131	121	111	103	95
42 PSF	2VLI18	10'-6	12'-7	12'-7	400	400	355	319	288	263	241	222	205	191	151	140	130	121	113
	2VLI16	10'-9	12'-10	13'-3	400	400	400	367	330	300	274	252	232	215	173	160	148	138	128
	2VL122	7'-0	9'-1	9'-5	353	311	277	222	198	178	161	147	134	122	113	104	96	89	82
5.50	2VL120	8'-3	10'-4	10'-9	399	350	310	278	251	201	181	165	150	137	126	116	107	99	92
(t=3.50)	2VLI19	9'-4	11'-6	11'-10	400	387	342	306	275	250	228	182	165	151	139	128	118	109	101
44 PSF	2VLI18	10'-3	12'-5	12'-5	400	400	376	337	305	278	254	234	217	174	160	148	138	128	119
	2VLI16	10'-6	12'-7	13'-0	400	400	400	388	350	317	290	266	246	228	184	170	157	146	136
	2VL122	6'-8	8'-7	8'-11	400	362	291	258	231	208	188	171	156	143	131	121	112	103	96
6.25	21/1120	7' 0	9,10	10'-2	400	400	361	323	260	234	211	192	175	160	147	135	125	115	107
(t=4.25)	2VLI19	8'-9	10'-11	11'-3	400	400	398	356	320	291	233	212	193	176	162	149	137	127	118
51 PSF	2VLI18	9'-8	11'-10	11'-11	400	400	400	392	355	323	296	273	220	202	187	173	160	149	139
	2VLI16	9'-11	12'-0	12'-5	400	400	400	400	400	369	337	310	253	232	214	198	183	170	158

COMPOSITE

 Minimum exterior bearing length required is 2.00 inches. Minimum interior bearing length required is 4.00 inches. If these minimum lengths are not provided, web crippling must be checked. Notes:

2. Always contact Vulcraft when using loads in excess of 200 psf. Such loads often result from concentrated, dynamic,

or long term load cases for which reductions due to bond breakage, concrete creep, etc. should be evaluated. 3. All fire rated assemblies are subject to an upper live load limit of 250 psf.

TILL CALLER

Page 40|90

Chapel Hill, NC

Appendix B: Wind Calculations

Table 2a - Wind	Variab	les	ASCE 7-05 References
Basic Wind Speed	V	95 mph	(Fig. 6-1)
Directionality Factor	k _d	0.85	(Table 6-4)
Importance Factor	Ι	1.15	(Table 6-1)
Exposure Category		В	(Sec. 6.5.6.3)
Topographic Factor	K _{zt}	1	(Sec. 6.5.7.1)
Velocity Pressure Exposure Coefficient evaluated at Height z	Kz	Varies	(Table 6-3)
Velocity Pressure at Height z	qz	Varies	(Eq. 6-15)
Velocity Pressure at Mean Roof Height (North/South)	$q_{\rm h}$	25.29 psf	(Eq. 6-15)
Velocity Pressure at Mean Roof Height (East/West)	q _h	24.62 psf	(Eq. 6-15)
Equivalent Height of Struture	>	94.6'	(Table 6-2)
Intensity of Turbulence	I,	0.252	(Eq. 6-5)
Integral Length Scale of Turbulence	L,	454.6'	(Eq. 6-7)
Background Response Factor (East/West)	Q	0.794	(Eq. 6-6)
Background Response Factor (North/South)	Q	0.786	(Eq. 6-6)
Gust Effect Factor (East/West)	G	0.878	(Eq. 6-4)
Gust Effect Factor (North/South)	G	0.873	(Eq. 6-4)
External Pressure Coefficient	C	0.8	(Fig. 6-6)
(Windward)	Ср	0.0	(1 15. 0 0)
External Pressure Coefficient (E/W	Cp	-0.47	(Fig. 6-6)
External Pressure Coefficient (N/S Leeward)	Cp	-0.5	(Fig. 6-6)

			Tal	ble 2c-	Wind Lo	ads (Ea	ıst/Wes	t) B=247	'-3'' L=2	282'-4''			
Floor	Height Above Ground- z (ft)	Story Height (ft)	Kz	qz	Wind Press Windward	sure (psf) Leeward	Total Pressure (psf)	Force (k) of Windward only	Force (k) of Total Pressure	Story Shear Windward (k)	Story Shear Total (k)	Factored Story Force (k)	Factored Story Shear (k)
Roof	144	13.33	1.10	24.84	21.90	-14.59	36.49	46.52	77.50	46.52	77.50	124.01	124.01
Mech													
Mez.	130.66	18.66	1.06	23.94	21.27	-14.59	35.86	63.37	106.84	109.89	184.34	170.94	294.95
8	112	16	1.02	23.04	20.64	-14.59	35.23	81.65	139.37	191.54	323.71	222.99	517.94
7	96	16	0.98	22.13	20.01	-14.59	34.60	79.16	136.87	270.70	460.59	219.00	736.94
6	80	16	0.93	21.00	19.22	-14.59	33.81	76.04	133.76	346.74	594.34	214.01	950.95
5	64	16	0.87	19.65	18.27	-14.59	32.86	72.29	130.01	419.03	724.36	208.02	1158.97
4	48	16	0.80	18.07	17.17	-14.59	31.76	67.93	125.64	486.95	850.00	201.03	1360.00
3	32	16	0.71	16.03	15.75	-14.59	30.34	62.31	120.03	549.26	970.03	192.04	1552.04
2	16	16	0.58	13.10	13.70	-14.59	28.29	54.20	111.92	603.46	1081.94	179.07	1731.11
1	0	0	0.00	0.00	0.00	0	0.00	0.00	0.00	603.46	1081.94	0.00	1731.11
∑Story (Windy	/ Shear ward) =	603.46	k		∑Story (Tota	Shear al) =	1081.94	k		Factored Force	l Story e =	1731.11	

	Table 2b-Wind Loads (North/South) B=282'-4'' L-247'-3''												
Floor	Height Above Ground-	Story Height	Kz	qz	Wind Pres	sure (psf)	Total Pressure	Force (k) of Windward	Force (k) of Total	Story Shear Windward	Story Shear Total	Factored Story	Factored Story
	z (ft)	(11)			Windward	Leeward	(psi)	only	Tiessuie	(k)	(k)		
Roof	162	14.33	1.13	25.52	22.38	-15.59	37.97	73.00	123.86	73.00	123.86	198.17	198.17
Mech													
Mez.	148.66	18.66	1.11	25.07	22.06	-15.59	37.65	98.11	167.44	171.10	291.30	267.90	466.07
8	130	16	1.07	24.17	21.43	-15.59	37.02	96.80	167.22	267.90	458.52	267.56	733.63
7	114	16	1.03	23.26	20.80	-15.59	36.39	93.95	164.37	361.85	622.90	263.00	996.63
6	98	16	0.98	22.13	20.01	-15.59	35.60	90.39	160.81	452.24	783.71	257.30	1253.93
5	82	16	0.94	21.23	19.38	-15.59	34.97	87.54	157.96	539.78	941.67	252.74	1506.67
4	66	16	0.87	19.65	18.27	-15.59	33.86	82.55	152.97	622.33	1094.65	244.76	1751.43
3	50	16	0.81	18.29	17.33	-15.59	32.92	78.28	148.70	700.60	1243.35	237.92	1989.35
2	34	16	0.72	16.26	15.91	-15.59	31.50	71.86	142.29	772.47	1385.63	227.66	2217.01
1	18	18	0.6	13.55	14.02	-15.59	29.61	71.23	150.45	843.69	1536.09	240.73	2457.73
B1	0	0	0	0.00	0.00	0	0.00	0.00	0.00	843.69	1536.09	0.00	2457.73
∑Story	Shear				∑Story	Shear				Factored	Story		
(Windy	ward) =	843.69	k		(Tota	l) =	1536.09	k		Force	e =	2259.56	

UNC- IRB

Chapel Hill, NC

UNC- IRB

Wind Certevlentions Cont Pressure Coefficient Cp (Fig. 6-6) NIS: Windword: Cp= 0.8 heard - 4/B = 247.25/282.33 = 0.876 Cp = -0.5 Elw: Windward: Cp= 0.8 Leenard - 4/B: 282.33/247.25 + 1.14 Cp = -0.47 Pressure Pz = 2z Gr Cp - qh (GCpi) (Lundword) Pn = qh Gr Cp - qh (GCpi) (Leeward) W/ GCpi = + 0.18, - 0.18 For enclosed bildges (Fig 6-5) N/S! hunduard Pz= (qz) (0.873) (6.8) - 25.29 (-0.18) Pz = (qz)(0.6987) + 4.552 Leeverd Ph= (25.29) (0.873) (-0.5) - 4.552 = -15.59 psf Elwi Windwerd PZ= (92)(0.878)(0.8)-24.62(-0.18) Pz = (qz)(0.7024) + 4.43 (Leeword Ph = (24.62) (0.878) (-0.47) - 743 - -14.59 PSF ME-02

Chapel Hill, NC

Appendix C: Seismic Calculations

Table 2. Gairmin D	7 1 - 1	ASCE 7-05	
Table 3a - Seismic De	esign v	ariables	References
Site Class		С	(Table 20.3-1)
Occupancy		III	(Table 1-1)
Importance Factor		1.25	(Table 11.5-1)
Structural System		Building Frame Sytem: Ordinary Reinforced Concrete Shear Wall	(Table 12.2-1)
Spectral Response Acceleration, short	Ss	0.209 g	(USGS)
Spectral Response Acceleration, 1 s	\mathbf{S}_1	0.081g	(USGS)
Site Coefficient	F _a	1.2	(Table 11.4-1)
Site Coefficient	F_v	1.7	(Table 11.4-2)
MCE Spectral Response Acceleration, short	S_{MS}	0.251	(Eq. 11.4-1)
MCE Spectral Response Acceleration, 1 s	S_{M1}	0.092	(Eq.11.4-2)
Design Spectral Acceleration, short	S_{DS}	0.167	(Eq. 11.4-3)
Design Spectral Acceleration, 1s	S _{D1}	0.092	(Eq. 11.4-4
Seismic Design Category	SDC	В	(Eq. 11.6-2)
Response Modification Coefficient	R	5	(Table 12.2-1)
Approximate Period Parameter	Ct	0.02	(Table 12.8-2)
Building Height (above grade)	h _n	162	
Approximate Period Parameter	х	0.75	(Table 12.8-2)
Calculated Period Upper Limit Coefficient	Cu	1.7	(Table 12.8-1)
Approximate Fundamental Period	T _a	0.92 s	(Eq. 12.8-7)
Fundamental Period Max	T _{max}	1.56	(Sec. 12.8.2)
Long Period Transition Period	T_L	8 g	(Fig. 22-15)
Seismic Response Coefficient	Cs	0.025	(Eq. 12.8-2)
Structural Period Exponent	k	1.21	(Sec. 12.8.3)

	Table	3b - Total R	edesign Buildi	ng Weight	for Seismic	
Floor	Area (sf)	Composite Deck (3 psf)	NonComposite Deck (5psf)	Slab LWC (115 pcf)	Superimposed DL (Partion's,finishes, MEP) (25psf)	Total Weight (k)
Penthouse Roof	13473.70	0.00	67.37	336.84	336.84	741.05
Lower Penthouse	22224.10	0.00	111.12	2555.77	555.60	3222.49
PH/Roof	34824.70	104.47	0.00	4004.84	870.62	4979.93
7.00	34824.70	104.47	0.00	4004.84	870.62	4979.93
6.00	34824.70	104.47	0.00	4004.84	870.62	4979.93
5.00	34824.70	104.47	0.00	4004.84	870.62	4979.93
4.00	34824.70	104.47	0.00	4004.84	870.62	4979.93
3.00	34824.70	104.47	0.00	4004.84	870.62	4979.93
2.00	34824.70	104.47	0.00	4004.84	870.62	4979.93
1.00	33226.20	99.68	0.00	3821.01	830.66	4751.35
					Total (Non-Structural Steel)=	43574.42
					Structural Steel =	3242.43
					Exterior Walls =	2884.49
					Total Weight =	49701.33

	Table 3c- Seismic Loads								
	Story					Lateral	Story		
	Weight W _x	Height h _x				Force F _x	Shear V _x		
Level	(k)	(ft)	h_x^k	$w_x h_x^{\ k}$	C_{vx}	(k)	(k)		
Roof	876.45	162	471.53	413276.12	0.04	42.99	0.00		
Mech									
Mez.	3452.93	148.66	424.97	1467380.25	0.15	152.65	42.99		
8.00	5341.01	130	361.30	1929722.44	0.19	200.75	195.64		
7.00	5341.01	114	308.22	1646183.56	0.17	171.25	396.39		
6.00	5341.01	98	256.67	1370903.68	0.14	142.61	567.65		
5.00	5341.01	82	206.88	1104938.62	0.11	114.95	710.26		
4.00	5341.01	66	159.09	849711.61	0.09	88.40	825.21		
3.00	5341.01	50	113.70	607263.39	0.06	63.17	913.60		
2.00	5341.01	34	71.30	380813.98	0.04	39.62	976.78		
1.00	5095.87	18	33.03	168305.41	0.02	17.51	1016.39		

e.	
· · ·	Seismic Culculations (Steel Redesign)
	Sc= 0.209 y S,= 0.081 y (USGS. gov)
	Fa: 1.2 Fv: 1.7 Site Class C
	Sms = Fass = 1.2 (0.209) = 0.251 Is = 1.25
	Sm, = Fv S, = 1.7 (0.081) = 0.138 Occ (at III
(IPAD)	SDS = 2/3 Sms = 2/3 (0.251) = 0.1676
(Star)	SDI= 2/3 Smi= 2/3 (0.138) = 0.0920
	Seismic Design Category (SDC) = B
	-> Determine Structure Fundamental Period, T
	To: SDI/SN = 0.92/0.167 = 0.551
	$T_L = 8q$
$\tilde{c} \rightarrow$	Ta = (+h," = 0.02 (162)"73 = 0.92 S
	La SCBFIS
	T = Ta = 0.92 K Trax = Cu Ta = 1.7 (0.92) = 1.56 s
	T= 0.92 < 3.5 Ts = 3.5 (0.551)= 1.13
	From Tech 1 - Type 2 Horizontal Irregularities
	ASCE 7-05 Requires modal Response Spectrum Analysis or Seismic response history procedure
	(se min [SDS/(R/3) = 0.167/(6/125) = 0.0348
	R=6 SDi/T(R/s) = 0.092/0.92 (4.25) = 0.0208 > 0.01
	$\frac{S_{0,1}T_{1}}{T^{2}(R_{1})} = \frac{S_{1}S_{1}}{S_{1}} \frac{S_{1}S_{2}}{S_{1}} \frac{S_{1}S_{1}}{S_{1}} \frac{S_{1}S_{2}}{S_{1}} \frac{S_{1}S_{1}}{S_{1}} \frac{S_{1}S_{2}}{S_{1}} \frac{S_{1}S_{1}}{S_{1}} \frac{S_{1}S_{2}}{S_{1}} \frac{S_{1}S_{2}}{S_{$
	V = CoW = 0.0208 (49,705.68) = 1033.9"

UNC- IRB

Chapel Hill, NC

Appendix D: Gravity Beams & Girders Calculations

- C 7	
ige A	$Deflection: \Delta \mu \leq \frac{21.33(12)}{360}, 0.71'' = \frac{(5)(0.722)(21.22)^{1}}{384}(29,000)(100)}{384}(29,000)(100)$ $\implies I(eq = 159.97 m^{4})$
AMPAD	$\Delta_{T} \leq \frac{21.33(12)}{240} = 1.07'' = \frac{(5)(1.29)(21.22)^{4}1728}{387(29,000)(Irea)}$ => Irea = 189.27 in ⁴ < controls
ع) ا	$\Delta_{PC} \leq \frac{21.33(12)}{360} = 0.71'' = \frac{(5)(0.385)(21.22)^{7}}{387(21,000)(31.02)}$ $\Rightarrow \text{ Iread : 85.27.17''}$
	Size Composite For $Y_2 = 6 - \frac{G}{2} = 5.5$ Qn: 17.2 (2"deut accome a:1
	$\frac{Mem}{Min} = \frac{J \times (2m)}{2} = \frac{2(2m)}{2} = \frac{1}{2}$ $W 14x 22 199 (189) 81.2 (5) \iff Jx > Jrea$ $W 12x 26 204 208 95.6 (6)$
	W14x26 245 227 96.1 (6) W14x22 w/ 10 studs * Member Selection is Consistent w/ RAM

in.	Girder Design
· (·	Tr.1, Area = (21.33)(21.66) = 462 SF
	Influence Area = ZAT = 924 SF
¢	4: Lo (0.25 + 15) = Lo (0.74) =74: 74 por
ampan Ampan	P. P. J. J.
(e)	Δ 3eq opens = 7.22'
	PU = Dend = (53.3 + 25) (21.33)(7.22) - 12.14
	Live = (74)(21.33)(7.22) = 11.4 K
	Arenyth 1.2 D + 1.6 L = 32.76 " = PU
$\left(\right)$	MU= (32,76)(7.22) = 236.5 "
41 I 13	Deflection
	$1 + \frac{1}{360} = \frac{(21 + 6)(12)}{360} = 0.722"$
	$\Delta_{max} = \frac{f \cdot l^3}{78 \text{EJ}} \longrightarrow 0.722 = 11.4 (21.66)^3 (1728) = 78 (29.000) (3762)$
	Iread => 371.6 m
- 	$\Delta_{T} \leq (21.66)(12) = 1.08"$
	Amux = Pl ³ = 1.03 = 23.5 (21.66) ² (1728) 28 = 28 = 28 (29,000) (Irea)
C	Iread => 470. 6" & Controls

Pie Compusite IL = (53.3 pst) (7.22) (21.33) = 8.24=P Ape 4 (21.6)(12): 0.722" Amm = 0.722 : (8.2)(21.66)³(1728) 28(29,000)(Jrea) = Iread - 245.6 in" (EAMPAD Member Selection Compusite Assume a = 1" Yz = 5.5" Qn = 17.1 Limit Dejoth 18" Øm. Zan # Men Ix WIRXYO GIL 428 9 147 367 129 8 5 Ix > Iread W13.35 510 W16 × 40 518 147 9 396 W18 ×35 w/ (18) studs Member Selection Consistent up RAM

Chapel Hill, NC

Appendix E: Gravity Column Calculations

	Sout Check
(AMPAD	$\frac{Uppend Interior Column Design}{4 - I - 7}$ $\frac{14}{7 - I - 7 - 6 \text{ SF}}$ $I - F I \text{ Unce } Area = \frac{1}{7} (A_T = 1777.6 \text{ SF})$ $\frac{14}{7 - I - 77.6 \text{ SF}}$
	From KANI Dead -> 155.75 K Live -> 126.89 K
	Strength 1.2D+1.6L+0.5RF PU= 389.55 Moment Negligible For Juterior Column Try WIOX49 ØPn: 428k > Pu .: Ok Member Selection Consident W/ RAM

Chapel Hill, NC

Appendix F: Lateral Calculations and Frame Elevations

enteral Braces Spot Check HSS 10 × 10 × 12" = 80.7" (From RAM) Skinderness > 1 × 300 P= 80.7 " 22 s = 22.39(12) = 69.61 3-86 Yielding CAMPAD ok Pn: Fyltg: 36 (17.2) = 619.2 * Pu Le Pn : ok Gr 50 PL - 14" Ryphre Fam Tube D3.1 ... U=)- X/I: 1-3.75=0.99 $\overline{X} = \frac{|3^2 \perp 2BH}{4/B+H}$ Pr: Fude Ae = Anu $\bar{X} = \frac{10^2 + 2(10)(10)}{24(10+10)} = 3.75$ For slutted Has welded to a Gusset FL ... An = Ag - [(1.25)(0.465)(2)] = 17.2 - 1.1625 = (C.04 Ac = 15.88 in2 Pn= (58)(15.28) = 920.9 K Pu < Pn : ok!

Frame Elevation 1

Frame Elevation 4

Frame Elevation 7 & 8

18X76

Final Report

W18X76

Frame Elevation 11

Σ

Chapel Hill, NC

Appendix G: Steel Redesign Floor Plans
	·		·							 [29%	, M16	6					
	· · · · · · · · · · · · · · · · · · ·		· · · · ·						W16a		- 51700	0100 1	N16a					:: :::::::::::::::::::::::::::::::::::
						1341	W12x19	W12c19	Witte	WINC	W1002	w1622	WINC	W1422	Witte	W12K19	1×910.	
	·			י ו ו ו			1 -	exa ruu	- 14		46×8	100	— F	<u>ا ا</u>	83	040		
						M/2/1	W12x19	W12x19	W1422	W1422	W1022	W1022	W1422	W1422	W11/22	W1622		
	·						1	exa niu			26×8	100.	16461	29	axahiv A		i×81/1	
						GIM	21XZIM	W12c19	WIGC	WINC	W14/CC	W1622	WBx10 W	WExtp	axafinu axafinu	WBX10 W		
				·			19 1	exanu ខ្ល	ខ	ø	26×8	e B	g	8	wue×3 ₿	ទ	1×800	
						M12	2IM	W12	MIR	WIE	W14	W14	W16	WIE	WIE	MIH		<u>µ</u>
						or ž	300.1: ភ្លឹង	្រទេសា ភូមិ	g	27	26×8 §	្រា ថ្ន	<i>a</i>	, di Bi	nus×3 ₽	ğ	1×810	
							M	Ň	N H	MI	M	M	N 	N N	Ĩ		-	++ -
						1211	12419	29 Din 19 Din	27	<u>a</u> i	26×8 291	Maria	221	1102	e×snu ≣	S	12800	
	· · · · · · · · · · · · · · · · · · ·							S S S S S S S S S S S S S S S S S S S	_ H	M	1638	2	N 		2	_►	1X800	
						H201	012x19	112c19	111000	11022	2211	1152	2211	2211	27 11 11	221		
		··· · · · · · · · · · · · · · · · · ·					(> (_	2×91/0	 -		26×8	> 100	 ⊦		NU8×3	기 - 나	i×ann	H-
						H2H	V12x19	V12x19	144.22	11622	2011	2211	11622	2211	2211	2		
					- #1x21W	0 000015	, P	157614	M		1000	S 0100 (- 0	×800,	== FH C
	ģ	g M15×18	🗿 M12×19	🗿 M12×18	🛐 MIS×18	<u>R</u> MISX18		45×18	NIDAT	MBx10	WEx 10	MBirld	W16067		9~8 WV	W16067		
2170100	0770100	≥ /wi5×18	≥ ////3×18	≥ /043×18	≥ ///13×18	≦ <i>M</i> US×18		4403 	() () () () () () () () () () () () () (06×24	12(8	92×60	MBM10		9×91///			
41x21W	41x21vv 78x8	27%±100	2247701	22%+ MM		ZZS+LAA	4) 	22 4 1	ω. ·	0 b×3 u		15x81		1				
12×14		M12X14	M14×22	M14725	M14*55	M14×55		20%7). 	∭ ko	12x19	ğ	2 21	12414					
10012×14	3 2 1 1 1 1 1 1 1 1 1 1	N12X14	N2 M14×23	K M14×55	00 MU 4403	22/4/0/		20 4 403	AN S	S	S	S	3					
41x2100		W12×14	22x4MU	22x4100	W14x22	M12×18		61×21	W I		26%	8 1 /1				++ - - - - - - - - - - - - - - - - -		
+LX7.100				91×2100	91×2100		THE K	91×21 Z 100 0	NA B	112419	5		12411					
21×01/0/	97×91/11	3		7701.100	774 144	7751100		5 C	5	S	S	S	S					
នីហេរ០×12	92×91/0/	1	<u>s</u>			20/9401		ŝ	0.580	29×9L	NA BIP	·21012	xaru			++ - 		+ -
₽IX2NWS	¥ hùue×3e ∮	a intx≤rov	₩x2100 0012x4€	52x4100 👷	50/4/07 🚆	0044755 }	0њ× 3	s wy g	11×800		12440							
41×2100	92x91M	₹ /045×18	M14755	M14×55	<u> በህ</u> ቀላር 5	004+VS5		14×33	AN :		N 1606	N16061	N16061			-		
	· · · · · · · · · · · · · · · · · · ·	- 1×2100	01×900		MOX12	1 41×2100	<u>i</u>	41×21	NN İ		×15	ົາແຫ				14		
										7001			ROIM					
\sim				Δc			<u>2</u> 7	a	നുട്		$\tilde{\sim}$		X	\sum		Ċ	\sim	<u>بحک</u>

Floor 1

Page 73|90

		·				 	· · · · ·	r	1/0X01/0		+				
							 V16x6		23-31/01	V16x6					
+++++++++		:			±===============	9XX9	in 1		29×91/0/	3	- 92×91/	ut 141	55×4	1.00	ŧ(
					12x14	12×19 12×19	14x22	14x22	14x22	14x22	14x22 11 1x2	12×19	112419	112x14	
						33	ŝ	3	s j	ŝ,	ig s	.M.	S	s ş	$ _{\mathcal{C}}$
	V				+	16×31		~	26×81.00		118×32	μ μ	15×9	LAA T	1C
					12x1	12×19 12×19	14x2	14x2	14x2/ 14x2/	14x2	14x2	12×16	12x19 a & 1 o	12X1	-
					ja Ja	33	3	3	3 3	ŝ	53	3	3	33	
					4	ເຂ×91 ຫຼືຫຼື			26×81.00	16×67	78×81/	≶ 16x67	18×9	- 4 rw	
					012x1	012/01 012/01	014x2	NINC	NIGC	10 10	at8x8₽	k ≘¦	N12k19	12×19	÷("
					s 	5 5	> 			108x	NBX NBX	108x			
					4	16×31	 ທ	8	26×81W	a	16×31	× _	18×9	e 7 ₩	17
					V12×1	0/12×1 0/12×1	014x2	W11/2	014x3 014x2	W14x2	W112	012x1	W12x1	W12x1 0/12x1	-
					*		<u> ~ </u>				+	 			
					14	201 201	22	22	26×81.00 8 8	22	38×31/ 21 23	10 N	9×31 18×9	현 <u></u>	1
					0012×	0012x	W14x	 W14x	W144	W14x	W14x W14x	W12X	W124	W12 X W12X	
									/610100				1910		÷{~
					14	- E - E	8	22	20~81/00	22	92×81/ N N	19	£ 20	₽ 2	$\left \right\rangle$
					0012X	10/12x	W14x	W14x	10/14x	W148	witz witz	W12x	WI2K	W12	
					t	15201			/6×8100		1-CEXSL		LEXO	LID - H	+{
					c14	10 10 10	737 737	8	8 8	(22	8 8	x19	e1s	x14	
					00125	W12: W12:	00143	WIL	WIN	00149	W14	W12)	W12	W12 VV12)	
					+	16×31	M 14		26×81.00		96×81/	<u>м</u> Н	18×9	LAN -	÷(•
					0x12	2x19	x27	ŧx22	\$x22 \$x22	¥22	ត្ន ឆ្ន	2x19	612	2819 1×14	
					VUTC	101	20114	1014	-1014 1014	W14	N IN	W12	IM:	W12	- 6
	DUI2X14	70,15×14	- M12×14			3223	12 12 12		2 133 ×81/⊞	29	29×91/	N 60	1\$×9	LAN F	ŧC
	8 M12×19	81×21W 🖁	8 MISX18	§ M15×18	& MISXIE	01×:	aw ĝ	S	108X	1016) 1016)		W16)	2119	2x19 2x14	12
	₹ M12×19 ₹	€ M15×18	€ M15×18	≦ M15×18	€ MN15×18	01×	8√ 11/8	01×8	19×36 19 19 19 19 19 19 19 19 19 19 19 19 19	8×10	2,9×94	8×10 8	M	NU1	
⁺ <mark>2</mark> 9	1×9100	ZZX#100	22×4100	22×+100	22×4100	c 101 x	800 F	zixqu	10×31	. Ŧ	1 <u>5, 2</u> 16x31	 ∥	18×9	LAN H	16
r-	0015×14	00.14×55	M14×55	M14×55	AV14×22	0t×	800 92 92 708	2x19	4x22 4x22	4x22	ឆ្ន ឆ្ន	4x22	211 <u>9</u>	2x14	
/16x6		27 M14×22	22 M14×22	22×+1/1	20 MJ4×33	QL×	800 B	101	101	101	33	101	S	N 1	1
	M12×14	61×21W	M15×18	AV12×19	M15×18	Of ×	800		98×81W		+ 96×81/	и. <mark> +</mark>	18×9	LAN -	
			M15×10	91×21/0	0012×10	01×	800 R	2×19	4x22	 4x22	4×22	 2×19	12419	12x19 2x14	\downarrow
29		X W8x10	81721101	8172110	erverim 4	QBACI MARCIM	01.488	Υ.	101 101	101	100	101	S	N	$\left \right>$
	- 21 - 101 × 101 - 2	1001 X 7	×	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	52x+twr 5	j	01 x 8/1	29×91,	MIS VALIA	9×91/1	1 SE×81	μ. 	18×9	LAN H	
	44 40,5 W12×19	vxsrvµ/pr×8∰	₹ M14×55	₹ M14×55	g Milt×S2	04×21/0	101×810	۰ ۱	· · ·	2	12x19 12x19	12×19	12416	112416 10×12	10
	3 61x21W 5	22×6100	M14×32	0014×33	1014×22	OL×	:	1646	<mark>N18k3</mark>	/16x6	M	, M	S	s 1,0	10
	+1×21W	41×\$100	41×21W	PLIX21VV	41×21W	٥٢×	\$10.		, - 5	5	114×33	UN.	7X52	100	1
·		·					+	<u> </u>	129×91/0		 				::{{}
		Y EY 🖬)		ENC	<u>P</u> E	N		-75	\sim		λ r	\mathbb{Y}_{2}	3

Chapel Hill, NC

Floor 2

						₩12×19	9716 10/12x19 & 10/14x22	0014x22	29×91/1 29×91/1 5	0014x22 2 2	8×36 16×26	S	4×35	10/12x14	
					W12x14	W12x19	W12x19 W14x22	0014x22	0014x22	W14X22	W14/22	0012×19	0/12×19	0012x14	
					W12x14	10/12×19	0012k19 5 9014k22 ≶	W1 tecz	26×81/M	W1422 108x10-0016x6	29×9	JN8x10 Wr16x6	6×31 N1249	0012X14	9.5 1
					W12x14	10/12×19	W12×19 5 9 W14×22	WItcz	W1422 79×81W	W14x22 W14x22		0012×19	W12419 15×0	10/12×14	
					W12x14	10/12×19 — 2	0012×19 5 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	W14x22	26×81/00	0014X22 10014X22	10114x22 50114x22 18X	W12×19	18×9 013 013	0012x14	
					W12x14	\0/12×19	10/12x19 5 10/14x22	W14x22	0014x22 57	WU14X22 WU14X22	SEX81	10/12×19	01 21 15×3	10/12×14	
					W12x14	10/12×19 -	W12×19 55 ≫ W14×22	Witezz	26×81/00 55 10	W1422 W14x22	N1102 45 36×35	W12x19	N1219	0012x14	
					W10×12	W12×19	W12r19 5 ∭14x22 1	W14x22	W14x22 79x8x97	0014x22 0014x22	96×81	W12x19	M1219 N1219	W12x14	1) 5
Norths.26	 T mul2×18 mul2×18 mul2×18 mul2×18 	t × 1 m 1 × 1 m 1 × 1 m 1 × 1 m 1 × 1 m 5 × 1 m 5 × 1 m 1 m	₹ 1015×16	M12X18	M10×13 M15×10 M15×10 M15×10	52 0 0	23 000 1×800 1×800		N18×68) ×30 00 00 ×30 00 00	MENTEP WICK R	29×9	708×1010/16×67	18×9	W12x14	B. 1 B. 2
29×91,00 69 69 69 69 69 69 69 69 69 69 69 69 69	13 0015×14 30 30 30 30 30 15×14 8 15×14	5 (0.19%5) (0.19%5) (0.19%5)	MU14×53	014×22	W14x22 W14x22 W18x87	0	L×800	0012×19	W14×22 ,3	0014X22 60 9014X22		W14x22	N1219 1219	0012×14 -)) (
29 %9 00	6 0.15×14 15×40 €0.15×14 15×40 €0.15×14	1×7,000 e 1×7,000 s 000,01×800 e 2,008x10 2,008x10 2,008x10 2,008x10 2,008x10 2,008x10 2,008x10 2,008x10 2,000 e	00.13×18	61×21/00 91×21/00 51×21/00	61×21/M 61×21/M 61×21/M 77×61/M	0 15×40	12 4 1×800 1×800	0012×19	07 <u>8</u> 23 97 <u>8</u> 376	0014x22 2	0014x22 0014x22 18x35	W12x19	Nižia 12:00	W12x14	3 2 72.
100 (4×22	12×40 8 12×40 2 12×40 8	5 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	W14x22	01422 1014x22	15×40 0	5 .nl.01×8 1×8nl	10/10/07 0/10/0000000000		10/16×67	N 96×81 51 10 10 10 10 10 10 10 10 10 10 10 10 10	10/12×19	W12(6 6×31	W10X12	
					MISXI4		1.8%		 		+×35				1.5 } :

UNC- IRB

Floor 3

Daniel R. Hesington

UNC- IRB

Chapel Hill, NC

Page 76|90

UNC- IRB

Floors 5-7

UNC- IRB

							2000	2	9×91W	6×67				
					9	z×яiла	5	-1-12	akatuu I	5	772%61	ar -	772	¢€LW
				x14	19 19	19 19	5	3	8 g	K26	61 e	: ę	613	5
				W12:	W12:	W12:	W14		10/14;	W16:	10/12: Mite	W12:	W12	W12
		י 		·	97	×gija	- Hi-	98	×8LAA	— F	- LEX91			(àruu
				x14	×19	×19	x19		i g	x19	19 19	<u>6</u>	x19	×19
				W12	W12	W12	1012		1014 1014	W12	W12 10/12	W12	W12	0012
				·	97	×91,íA	- Hi	; 98	×8170	6	29×91	ເ ທີຊີ	97	i I Quie
		י י י		X14	kx19	×19	kx19 	g j	ğ§	M/16x		W16x	- 5	618
				1012	10/12	W13	10/12	S		8×10	ष्ट्र वि _{9×9} व्	%×10	Ň	IN:
				·	97	xarviv	- 1-1	98	×8170	-1-	- <mark>- s - s</mark> 19×31	AN T	97	(91 /)/
				2x14	2x19	2x19	2x19	ទ្	4×22	2x19	2419 01-20	2×19	2419	6 6
				1011) 1	1001	10.L	100	W1	1001	1011	IN I	μų.	W1	M
					36	xəriv	+++	98	×81W		- <mark></mark> -	40 t	97	(9LNA
				2x14	2x19	2x19	2x19	4x22	4x22	2x19	2x19 2x19	2x19	219	12x19
				1M	101	W1	- I		100	1W1	1001	μ.	Ň	M
					97	xərviv	╺┠┽┨╧━	98	×8170			4	97	(arw
				2x14	2x19	2x19	2×19	4X22 4V22	4x22	2x19	12519 2419	2x19	2119	2119
				NO.	1001	101			1 AN	101	S	100	M	M
		L		ŀ	97	xarin		98	x8rw		96×39	1 1	97	(91.M)
				12x14	12×19	12x19	12×19		11/22	12×19	12x19	12×19	12:19	112119
) A	ŝ	N.	ŝ	S	SS	ŝ		3	S	S
				4	97 00	×91.in		98 	4 ~4		96×31	M a	97)	(91.00) (91.00)
				012×1	/12×1	NIZKIS	1251	120	v14x2	/12×1	N12r19	/12x1	NIZKIS	NI24
	YZ FOR	5177100	5177105		- P		우) s					
38		91×7100	91 ×7100	PLXZIAN S		скралл 11 × 800	Max 10	NBx10 18×10 18×10	9×81/18 2	16×67	78×81	≷ 16x67	97) 6	ອີເໜ
	×21W § 01×21W §	€ M15×18	€ M15×18	₹ /0/15×18		01×800	. 원이		e 문 ^{KXX} 년	W 9	á bxð	1 B	- NIŻ	WI2
	x+1.00		- 1014×22-		İ	arx\$w		<u>ŝ</u>	S		- <u>ĝ</u> ĝ	ŝ		
79×91/W	M14×22 M12×1	N14×22	NN14×22	1014×33	-	01×\$00		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n6x26 ≣	10 10	ق ق 82×81	2 2 2	<u>ق</u> ا 192	±α α.100
1×67-		27Xb100 8	60X 77X100 8	77X5100 8			Vort6x	00120	0012x	0V12X	W124	0/12×	WI2	WI2
		61 X7100	61 Y7100	BLYZLOO	_	01000 			RYOLOG				1-072	ró Leo
		M12×10	M13×10	112×10		01×8/00	22-1		0~31/0(19	e e	± ₽	61 90	·ar 2
29× 98 M	1×2100 01×800	- 01×2100		8 M15×19	0 6 ×40	ររណ្ឌីល	X	1200	0012x	1012x	10/12×	ur12x	w12	W124
		6LXZIAA				12×	×800	XOL MA	107100	oxore	l-			(01.00
	ເພິ່ງ ທາງ x 40 ທາງ x 40	5 W12×19	5 28 28 28	M15×18	0+×2	. whoi	×800	~91/000	1201012	avarvin	별	×16	E S	10116
1014	x21W 2 W12x		 M15×19	2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3		01×\$W	с 6x67	6x67	6x67	6×67	W12	W12	W12	W12
	×21W +1×21W	M12×14	12×14	w12×14	5	:1×01/0	δ. Α.	§-]			14×55	M +	18	(CIVU

Roof/Penthouse

Final Report

	 - - - - -											+ + -		1					
														X67		78×81W	x67		
														0016			0/16		
					c::::							: 21:	::::::;			29×91.00			
														13			13		
														1085			(8))		
														11×800	+		þ		
												11	₽	11×8∰			12		
												11	X80	IIX8			M0	01×8₩ 🖨	
		()							- 2					11 × 8/0	1		2	01×8/10 §	
													0	11×8/00		01×800	×67	78x8tVV 🖉	
												11	e 0	u×s∰			0/16	g M15×40	
1			10000	-5-5-5-5-5-						1000000			ĝ	II ×8種		01×800	x14	78x8tWV 🛱	
		i i											Q	11×8/00			0/12	E AN14×55	
					 		1					11		11×800	1-	01×800	-1	7014×22	
													e o	u×s∰			x31	<u>∞</u> M14×55	
													ĝ	n xa		01×800	0/16	g M14×33	
							I.			10000		11	, p	11×8/00				00.14×55	
1												11	0	11×800		01×800		0014×22	
													e o	11×80			X31	5 MU14×22	
													ĝ	11×8		01×800	0/16	g M14×33	
												11	0	11×8/00		80		7014×22	
							1					11	0	11×800		01×800		7014×22	
													원이	II ×800		BM	×31	G AN14×55	
													ĝ	u×s∰		01×800	016	g M14×55	
		[]											0	11×8/00			_	7014×33	
													d	IT ×8/00		01×800		7014×22	
													Ę.₀	II ×80			x31	S 1014×33	
													ŝ	n x8월		01×800	W18	22 MJ 4×22	
	1	larres and					ł.	2220				. <u></u>	0	11×8)00		80		7014×22	
													ď	II ×8hh		01×800		1014×22	
		1										11	원이	IL×8∰		1	×31	S VUT4X22	
									- 2				ŝ	ILX8뉕		01×800	WIE	27 MJ 4×55	
												: 21:	0	11×8/0	11×80A-			042×40	
							1					11	륃	IL XS	×14	04×81W	29×	78x8tVV 🖉	
1							+						ĝ	11 × 890	bx 程m	92×91/m	0/16	0+x21W 8	
		Ę	믲꺦	通信	문7주	87 (B) 9	9	7夏7日	9 8	문재	27 (B)	×14	ətxst	w 🗿	师 沉則	61×210	0 2	29×91/00 0	
	يد بند	ġĝ	<u></u>	-80 - 80 - 80 - 80 - 80 - 80 - 80 - 80			ŝ	8	<u> </u>	ŝ.		112	- 22×64	M-S	5	21×0M		21X01/04	
	29×91/M	01×8/W	×33	>1/00	52	x#FTUU	1	22×+1.	AA 🚽	52	24 LAA	Ť	14×33	an 💾	0 1 5×40	1 \$1×2	a '	W12×14	
														x 10	x10 1x12 1x26	01×80/8	831	S 01×800	
	29%			ž9	Ę			x10	ž9	3	S.	x10	×10	800	01/01	01×8/0	W18	S OFXERNI 4	
	Į.	are end		80	ģ			Š į	1×800	al×8	Ř	1008	8			蜀 5×14	A	Ph1x2100	
													0	11×810	រាភិពប	1, 01×8W&		8 01×800	
							+	la	1 × 800.	01×8/	N.			X19	x 10 1085	#1×210	N 92		
	78×81)W	01×8W 8	송 9주역	arŵ 4	4 9 <u>2</u>	karfwi ž	4 4	9∰9r	₩ 4	₹ 97	Starffor	810	₽×≤ι∰Ω	乱科	01×30	01×8/0		E M10×13	
		12×	/12× /12×	N124	(12x 112v	12	12X	112X	12x	(12x	12x	h2x	12×	12×		1	1		
		\$	SS	13	S S		ŢS	513		S		5	S	SI.	78×81\n			\$1×800	
			06721/00	01×8/07	92:	r8110/		92,491	101	97	'yârw	110	PYCIN D	1.78/00	1~		2		
														6x6	6x6		6x6		
															§		- 20		
																79X9100	-		
		~ ~	the second second	S					1000	-		100 0	and the second se			- CONTRACTOR			

Lower Penthouse Roof

Final Report

29×9	0v12x40	29×9													
1)M.	W16x67														
21×01/M	W1240 (V10×12	21×01W													
÷;-{;(W10X12							10000							
418	WIDK12	61)													
2100	(0/10×12	crw													
	W10×12														
	W10x12	E													
	W10×12	81×2	111												
1.00	0010×12	1.703													
	W10×12														
	W10X12	418													
v.13>	W10t12	s													
	(W10x12														
6	W10x12	e													
115×11	W10x12	1×zu													
ι ι	0010X12 0010×12	UN													
×40	00/10×12									142222					
1015	W10x12	91×2													
01×8	WID12	 L/01													
N16×60 월 2×40 월 2 월 2 월 2 월 2 월 2 월 2 월 2 월 2 월 2 월 2			XID AUTZ	# 	W12X18			2814	00128	14 	1 22 100		2x14 7	0012x14	
78×8170 7 01×8 7 000 7 0000 7 0000 7 0000 7 0000 7 0000 7 0000		21×0100 A A A	21×0170 21×0170 21×0170	121×0170 121×0170 121×0170	21×01W 21×01W	21×01W 21×01W	21×01W	21×01W	ST×OTVV ST×OTVV	21×01/04	21×0100	ST×01W	21×01/04	0012×40	29×91/00 05×21/00 29×91/00
1000 2 2 2 2 2 10000	10 <u>+</u> VN8x1	0	5×67	- 1	0012×19	0012×10		2×19	10/12×	 	8×10-101	3×50_ 10/1	2x14 1	M012×14	10/16×67
									-						
	((-#{								(===(
0.5 1 (1(2)3) 2	(2:1)	3.1.3.2	4 .1	6	2	9	\sim		2	6)(9 .5	•	E		(B.II.)

Upper Penthouse Roof

UNC- IRB

Chapel Hill, NC

Appendix H: Construction Management Breadth

(This page was intentionally left blank)

Chapel Hill, NC

Frame Takeoff

Page 9/9 04/04/10 15:27:15

RAM Frame v14.00.03.00 DataBase: IRB Thesis Building Code: IBC

Level: LOADING DOCK

Floor Area (ft**2): 0.0

TOTAL STRUCTURE FRAME TAKEOFF

Floor Area (ft**2): 359712.0

Columns:

# 164 1 25 16 2 6	Length ft 2640.0 16.0 400.0 256.0 32.0 96.0	Weight lbs 200325 1552 42330 33276 5041 16758	UnitWt psf
# 164 1 25 16 2 6	Length ft 2640.0 16.0 400.0 256.0 32.0 96.0	Weight lbs 200325 1552 42330 33276 5041 16758	UnitWt psf
164 1 25 16 2 6	ft 2640.0 16.0 400.0 256.0 32.0 96.0	Ibs 200325 1552 42330 33276 5041 16758	psf
164 1 25 16 2 6 -214	2640.0 16.0 400.0 256.0 32.0 96.0	200325 1552 42330 33276 5041 16758	
$ \begin{array}{r} 1 \\ 25 \\ 16 \\ 2 \\ 6 \\ $	16.0 400.0 256.0 32.0 96.0	1552 42330 33276 5041 16758	
25 16 2 6	400.0 256.0 32.0 96.0	42330 33276 5041 16758	
16 2 6	256.0 32.0 96.0	33276 5041 16758	
2 6 	32.0 96.0	5041 16758	
6	96.0	16758	
214		299281	0.83
#	Length	Weight	UnitWt
	ft	lbs \	, psf
219	4510.7	302366	
219		302366	0.84
#	Length	Weight	UnitWt
	ft	lbs	psf
1	16.9	1205	-
415	8059.9	471722	
20	440.3	31314	
436		504242	1.40
	# 219 219 219 # 1 415 20 436	# Length ft 219 4510.7 219 4510.7 219 410.3 # Length ft 1 16.9 415 8059.9 20 440.3 436 436	# Length ft Weight lbs 219 4510.7 302366 219 302366 302366 219 302366 302366 # Length ft Weight lbs 1 16.9 1205 415 8059.9 471722 20 440.3 436 504242

Note: Length and Weight based on Centerline dimensions.

RAM Steel v14.00.03.00 DataBase: IRB Thesis Building Code: IBC			04. Steel Code: AIS	Page 5/: /04/10 15:20:01 C360-05 LRFI
SIZE	#	LENGTH (ft)	WEIGHT (lbs)	
W40X183	1	31.67	5743	
	273		163741	
So tal Number of Studs = 36	17			
AL STRUCTURE GRAVITY	Y BEAM T	AKEOFF		
Steel Grade: 50				
	ц			
	370	$\frac{1}{5} \frac{1}{4} \frac{1}{9} \frac{1}{4}$	WEIGHT (108) 54540	
78¥13	579 7	42.67	558	
/8X15	1	21.67	327	
/10X12	106	2573 21	30996	
V12X14	294	5950.40	84231	
V12X16	62	1288.46	20650	
V12X19	596	12557.09	238001	
V12X40	133	1855.61	73877	
V14X22	737	15626.38	345093	
V16X26	82	1780.83	46539	
V16X31	188	3830.02	118989	
/16X50	2	20.04	1002	
V18X35	52	1133.84	39739	•
V18X40	1	31.33	1258	
W18X55	1	30.67	1691	
/18X60	11	341.33	20442	
V18X76	2	66.00	5008	
W18X65	4	124.00	8059	
V18X86	10	341.00	29357	
W18X71	15	460.00	32558	
V18X97	93	3173.95	307807	
W21X101	2	69.33	7031	
W40X183	1	31.67	5743	
	2774		1473496	

Total Number of Studs = 29125

Page 83|90

Gravity Column Design TakeOff

RAM Steel v14.00.03.00 DataBase: IRB Thesis Building Code: IBC

04/04/10 15:20:03 Steel Code: AISC360-05 LRFD

Steel Grade: 50

I section

Size	#	Length (ft)	Weight (lbs)
W10X33	205	3344.0	110489
W10X39	35	560.0	21914
W12X40	88	1408.0	56056
W14X43	33	536.0	22981
W12X45	6	96.0	4279
W10X45	32	512.0	23172
W14X48	4	64.0	3071
W10X49	47	752.0	36848
W12X50	16	256.0	12718
W12X53	15	240.0	12740
W14X53	12	192.0	10192
W10X54	5	80.0	4301
W12X58	8	128.0	7404
W10X60	10	160.0	9582
W14X61	40	640.0	38982
W12X65	15	240.0	15598
W10X68	11	176.0	11978
W14X68	11	176.0	11978
W12X72	9	144.0	10339
W14X74	13	208.0	15430
W10X77	9	144.0	11074
W12X79	31	496.0	39156
W14X82	9	144.0	11760
W12X87	6	104.1	9070
W10X88	2	32.0	2820
W14X90	38	608.0	54826
W12X96	1	16.0	1535
W14X99	3	48.0	4753
W10X100	2	32.0	3201
W12X106	1	16.0	1699
W14X109	2	32.0	3484
W10X112	12	192.0	21495
W14X145	10	160.0	23248
W14X159	2	32.0	5085
W14X176	3	48.0	8461
W12X190	6	96.0	18228
W14X193	1	16.0	3092
	753		663040

		Structu	ral Concrete	Estimate				
Beams and Girders								
		Unit Mat'l		Unit Labor		Unit Equip.		Total Item
Item	Total CY	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Normal Weight Concrete, 5000 PSI	5024.92	\$109.00	\$547,716.28					\$547,716.28
		I hat Adaptil		I hait I ala an		Unit Family		Tatal Hans
Itom	Total CV	Unit Wat'l	Mat'l Cost	Unit Labor	Labor Cost	Unit Equip.	Equip Cost	Total Item
Placing beams, elevated, pumped	5024.92	COSt	What I Cost	\$29.00	\$145,722,68	\$13.30	\$66.831.44	\$212,554,12
				7-0-00	+	+	, ,	+, ··
		Unit Mat'l		Unit Labor		Unit Equip.		Total Item
ltem	SFCA	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Forms in Place, Beams and Girders, 3 use	282568	\$1.11	\$313,650.48	\$4.56	\$1,288,510.08			\$1,602,160.56
		Unit Mat'l		Unit Labor		Unit Equin		Total Itom
ltem	Ton	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Fauin Cost	Cost
Reinforcing in Place, Beams and Girders, #3 to #7	218.47	\$800.00	\$174,776.00	\$700.00	\$152,929.00	cost	Equip: cost	\$327,705.00
Columns		-					•	•
		Unit Mat'l		Unit Labor		Unit Equip.		Total Item
Item	Total CY	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Normal Weight Concrete, 7000 PSI	436.63	\$163.50	\$71,389.01					\$71,389.01
Normal Weight Concrete, 5000 PSI	121.1	\$109.00	\$79,319.30					\$79,319.30
	i	Unit Mat'l		Unit Labor		Unit Equip.		Total Item
Item	Total CY	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Placing columns, 24" thick, pumped	1164.3			\$19.05	\$22,179.92	\$8.70	\$10,129.41	\$32,309.33
		Unit Mat'l		Unit Labor		Unit Equip.		Total Item
Item	SFCA	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Forms in Place, 24" x 24" Columns, 3 use	68744.54	\$0.91	\$62,557.53	\$3.99	\$274,290.71			\$336,848.25
		Unit Mat'l		Unit Labor		Unit Fauin.		Total Item
ltem	Ton	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Eauip. Cost	Cost
Reinforcing in Place, Columns, #8 to #18	75.78	\$800.00	\$60,624.00	\$490.00	\$37,132.20			\$97,756.20
Shear Walls								
		Unit Mat'l		Unit Labor		Unit Equip.		Total Item
Item	Total CY	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Normal Weight Concrete, 7000 PSI	2345.99	\$103.50	\$383,569.37					\$383,569.37
	1407.0	\$105.00	\$133,428.40					\$133,428.40
		Unit Mat'l		Unit Labor		Unit Equip.		Total Item
ltem	Total CY	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Placing Walls, 12" thick, direct chute	3753.59			\$12.85	\$48,233.63	\$0.61	\$2,289.69	\$50,523.32
ltow	SEC.A	Unit Mat'l	Mart'l Cost	Unit Labor	Labor Cost	Unit Equip.	Faulta Cost	Total Item
Forms in Place 8' to 16' Walls 3 use	183//// /	COST	\$132 079 97	¢3 71	\$680 578 72	Cost	Equip. Cost	\$812 658 69
	103444.4		\$132,075.57	<i>4</i> 5.71	\$000,570.72			J012,030.05
		Unit Mat'l		Unit Labor		Unit Equip.		Total Item
Item	Ton	Cost	Mat'l Cost	Cost	Labor Cost	Cost	Equip. Cost	Cost
Reinforcing in Place, Walls, #3 to #7	54.23	\$760.00	\$41,214.80	\$375.00	\$20,336.25			\$61,551.05
Reinforcing in Place, Walls, #8 to #18	55.32	\$760.00	\$42,043.20	\$281.00	\$15,544.92			\$57,588.12
Subtotals			\$2,062.368.33		\$2,685,458,12		\$79.250.54	\$4.827.076 98
Adjusted for Location (0.91)			+=,::=,:::,::::::::::::::::::::::::::::		+=,::0,:00.1E		÷: 3,200.04	\$4,392,640.05
Design Contingency (1.5%)								\$65,889.60
Escalation Contingency (3.5%)								\$153,742.40
Insurance (3%)								\$131,779.20
Bonds (2%)								\$87,852.80
Overnead & Profit (10%)					Tot	al Structural	Concrete Cost:	\$459,204.01
					10	a sciactural	CONCIECE CUSL	00.00 ر 1 / 2 / 2 / 2

Structural Steel Estimate											
Member Size	Unit	Quantity	length (LE)	Unit Mat'l Cost	Mat'l Cost	Unit Labor Cost	Labor	Unit Equipment Cost	Equipment	Total Item	
Beams and Girders	Unit	Quantity	Length (LF)	COST	Wat I Cost	COST	cost	COST	COSI	COSt	
Wide Flange Shapes											
W8X10	LF	379	5414.94000	\$12.10	\$65,521	\$2.83	\$15,324	\$2.68	\$14,512	\$95,357	
W8X13		2	42.67000	\$18.15 \$18.15	\$774	\$2.83	\$121 \$61	\$2.68	\$114 \$58	\$1,010 \$512	
W10X12	LF	106	2573.21000	\$18.15	\$37,312	\$2.83	\$7,282	\$2.68	\$6,896	\$51,490	
W12X14	LF	294	5950.40000	\$19.35	\$115,140	\$1.93	\$11,484	\$1.83	\$10,889	\$137,514	
W12X16	LF	62	1288.46000	\$19.35	\$24,932	\$1.93	\$2,487	\$1.83	\$2,358	\$29,776	
W12X19	LF	596	12557.09000	\$19.35	\$242,980	\$1.93	\$24,235	\$1.83	\$22,979	\$290,194	
W12X40 W14X22		737	15626 38000	\$42.50	\$78,863 \$492 231	\$2.10 \$1.71	\$3,897	\$1.98 \$1.62	\$3,674 \$25,315	\$86,434 \$544 267	
W14X22	LF	82	1780.83000	\$31.50	\$56,096	\$1.71	\$3,045	\$1.62	\$2,885	\$62,026	
W16X31	LF	188	3830.02000	\$37.50	\$143,626	\$1.89	\$7,239	\$1.79	\$6,856	\$157,720	
W16X50	LF	2	20.01000	\$60.50	\$1,211	\$2.12	\$42	\$2.01	\$40	\$1,293	
W18X35		52	1133.84000	\$42.50	\$48,188	\$2.65	\$3,005	\$1.83 ¢1.92	\$2,075	\$53,268	
W18X55		1	30.67000	\$66.50	\$1,520	\$2.03	305 \$86	\$1.05	\$59	\$1,000	
W18X60	LF	11	341.33000	\$66.50	\$22,698	\$2.79	\$952	\$1.92	\$655	\$24,306	
W18X65	LF	4	124.00000	\$78.50	\$9,734	\$2.82	\$350	\$1.95	\$242	\$10,325	
W18X71	LF	15	460.00000	\$78.50	\$36,110	\$2.82	\$1,297	\$1.95	\$897	\$38,304	
W18X76 W18X86		2 10	341,00000	\$92.00 \$104.00	\$6,072 \$35,464	\$2.82 \$2.82	\$186	\$1.95 \$1.95	\$129	\$6,387 \$37.091	
W18X97		93	3173.95000	\$104.00	\$330.091	\$2.82	\$8.951	\$1.95	\$6.189	\$345.231	
W21X101	LF	2	69.33000	\$122.00	\$8,458	\$2.54	\$176	\$1.75	\$121	\$8,756	
W40X183	LF	1	31.67000	\$235.00	\$7,442	\$2.26	\$72	\$1.56	\$49	\$7,563	
Columns Wide Flange Shapes	[1									
Wide Hange Shapes W10X33	LF	205	3344.00000	\$54.50	\$182,248	\$1.64	\$5,484	\$1.56	\$5,217	\$192,949	
W10X39	LF	35	560.00000	\$54.50	\$30,520	\$1.64	\$918	\$1.56	\$874	\$32,312	
W10X45	LF	32	512.00000	\$54.50	\$27,904	\$1.64	\$840	\$1.56	\$799	\$29,542	
W10X49	LF	47	752.00000	\$54.50	\$40,984	\$1.64	\$1,233	\$1.56	\$1,173	\$43,390	
W10X54 W10X60		5 10	80.00000	\$54.50 \$54.50	\$4,360	\$1.64 \$1.64	\$131	\$1.56	\$125	\$4,616 \$9,232	
W10X68	LF	10	176.00000	\$82.50	\$14,520	\$1.72	\$303	\$1.63	\$287	\$15,110	
W10X77	LF	9	144.00000	\$82.50	\$11,880	\$1.72	\$248	\$1.63	\$235	\$12,362	
W10X88	LF	2	32.00000	\$82.50	\$2,640	\$1.72	\$55	\$1.63	\$52	\$2,747	
W10X100	LF	2	32.00000	\$82.50	\$2,640	\$1.72	\$55	\$1.63	\$52	\$2,747	
W10X112 W12X40		88	1408 00000	\$136.00	\$20,112	\$1.77 \$1.64	\$340 \$2 309	\$1.07	\$321 \$2,196	\$20,772	
W12X45	LF	6	96.00000	\$60.50	\$5,808	\$1.64	\$157	\$1.56	\$150	\$6,115	
W12X50	LF	16	256.00000	\$60.50	\$15,488	\$1.64	\$420	\$1.56	\$399	\$16,307	
W12X53	LF	15	240.00000	\$60.50	\$14,520	\$1.64	\$394	\$1.56	\$374	\$15,288	
W12X58	LF	8	128.00000	\$60.50	\$7,744	\$1.64	\$210	\$1.56	\$200	\$8,154	
W12X65	LF	15	240.00000	\$60.50	\$14,520	\$1.64	\$394	\$1.56	\$374	\$15,288	
W12X/2 W12Y7Q	LF I F	31	496 00000	500.50 \$60 50	58,712 \$30.008	\$1.64 \$1.64	\$236 \$812	\$1.56 \$1.56	\$225 \$774	\$9,1/3 \$31 595	
W12X73	LF	6	104.00000	\$105.00	\$10,920	\$1.72	\$179	\$1.63	\$170	\$11,268	
W12X96	LF	1	16.00000	\$105.00	\$1,680	\$1.72	\$28	\$1.63	\$26	\$1,734	
W12X106	LF	1	16.00000	\$105.00	\$1,680	\$1.72	\$28	\$1.63	\$26	\$1,734	
W12X190	LF	6	96.00000	\$230.00	\$22,080	\$1.86	\$179	\$1.76	\$169	\$22,428	
W14X43	LF	33	536.00000	\$89.50	\$47,972	\$1.72	\$922	\$1.63	\$874	\$49,768	
W14X48 W14X52		4	64.00000	\$89.50	\$5,728	\$1.72	\$110	\$1.63	\$104 \$212	\$5,942	
W14X53	LF	40	640.00000	\$89.50	\$17,184	\$1.72	\$1,101	\$1.63	\$1.043	\$59.424	
W14X68	LF	11	176.00000	\$89.50	\$15,752	\$1.72	\$303	\$1.63	\$287	\$16,342	
W14X74	LF	13	208.00000	\$89.50	\$18,616	\$1.72	\$358	\$1.63	\$339	\$19,313	
W14X82	LF	9	144.00000	\$89.50	\$12,888	\$1.72	\$248	\$1.63	\$235	\$13,370	
W14X90	LF	38	608.00000	\$89.50	\$54,416	\$1.72	\$1,046	\$1.63	\$991	\$56,453	
W14X99	LF	3	48.00000	\$89.50	\$4,296	\$1.72	\$83	\$1.63	\$78	\$4,457	
W14X109		2 10	32.00000 160.00000	\$89.50 \$145.00	\$2,864 \$23,200	\$1.72 \$1.77	\$55 ¢782	\$1.63 \$1.67	\$52 \$767	\$2,9/1 \$73 750	
W14X143	LF	2	32.00000	\$145.00	\$4.640	\$1.77	\$205 \$57	\$1.67	\$53	\$4,750	
W14X176	LF	3	48.00000	\$213.00	\$10,224	\$1.86	\$89	\$1.76	\$84	\$10,398	
W14X193	LF	1	16.00000	\$213.00	\$3,408	\$1.86	\$30	\$1.76	\$28	\$3,466	

		i								
Duase of Evenues										
Wide Elange Shapes				1						
W18276	LE	164	2640.00000	\$92.00	\$2/12 880	\$2.82	\$7 1/15	¢1 95	\$5 1/18	\$255 //73
W18X70	IF	104	16,00000	\$104.00	\$1 66/	\$2.02	\$45	\$1.95	\$3,140	\$255,475
W18X106	IF	25	400.00000	\$128.00	\$51,004	\$2.02	\$1 128	\$1.95	\$780	\$1,740
W10X100	IF	16	256.00000	\$1/18.00	\$37,888	\$2.02	\$650	\$1.55	\$1/18	\$38,986
W10X150	IF	2	32,00000	\$1/18.00	\$1,000 \$1,736	\$2.54	\$050 \$81	\$1.75	\$56	\$30,500 \$4 873
W10X130	IF	6	96,00000	\$1/18.00	\$1/ 208	\$2.54	\$2///	\$1.75	\$50 \$168	\$14 620
Beams	-	0	50.00000	Ş140.00	J1 4 ,200	Υ <u></u> 2.34	γz++	Ş1.75	Ş100	Ş1 4 ,020
W16X67	LE	219	4510 70000	\$77.50	\$349 579	\$2.36	\$10 645	\$1.69	\$7 623	\$367 848
Braces	-	215	4510.70000	<i>Ş11.50</i>	<i>43</i> ,373	Ş2.30	<i>910,043</i>	<i></i>	<i>\$1,025</i>	\$307,040
HSS10X10X5/8	LF	1	16,90000	\$1,200.00	\$75	\$29.50	\$31	\$27.50	\$29	\$135
HSS10X10X1/2	LE.	/15	8059 90000	\$1,200,00	\$31 125	\$29.50	\$14,860	\$27.50	\$13,853	\$59,838
HSS10X10X1/2	16	20	440 20000	\$1,200.00	\$1,125 \$1,500	\$20.50	¢917	\$27.50	\$15,055	\$3,060
115512/112/11/2	-	20	440.30000	Ş1,200.00	Ş1,500	Ş25.50	ÇÜIZ	Ş21.30	Ş737	\$3,005
Subtotal Costs					\$3.351.091		\$174.228		\$155.825	\$3.681.143.53
Adjusted for Location (0.91)					., ,		. ,		. ,	\$3,349,840.61
Design Contingency (1.5%)										\$50,247.61
Escalation Contingency (3.5%)										\$117,244.42
Insurance (3%)										\$100,495.22
Bonds (2%)										\$66,996.81
Overhead & Profit (10%)										\$334,984.06
							Total Structural Steel Cost:			\$4,019,808.73

UNC- IRB

Chapel Hill, NC

Appendix I: Enclosure Breadth: Blast Design

(This page was intentionally left blank)

Fig. 3. Chart that relates standoff distance and charge size to equivalent 3-s duration equivalent design loading from ASTM F 2248-03. (Reprinted with permission from ASTM F 2248-03, copyright ASTM International, 100 Barr Harbor Dr., West Conshohocken, PA 19428.)

∰ E 1300 – 04^{€1}

FIG. A1.29 (upper chart) Nonfactored Load Chart for 8.0 mm (5/16 in.) Laminated Glass with Four Sides Simply Supported (lower chart) Deflection Chart for 8.0 mm (5/16 in.) Laminated Glass with Four Sides Simply Supported